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ABSTRACT 

An installed passive louver shading systems can affect the heating, cooling, and 

lighting loads of any building, by altering the amount of solar energy, in the form of light 

and heat, from entering.  The benefits of a louver system are derived from the application 

of solar geometry incident on the site and the climate within the area.  By optimizing a 

passive louver system’s design parameters, a building can reduce the total annual energy 

consumption due to artificial heating, cooling loads and artificial lighting.  

This research has implemented simulation modeling software, Energy Plus, to 

predict the effect of passive louver shades across a standard year on a home within the 

Midwest part of the country.  This energy model of the building has been validated 

against actual experimental data, over the course of six months.  This research has 

optimized a passive louver shading array, unique to this latitude, by generating 

converging simulations to track energy demands of the heating and cooling systems of 

the home.  The optimized array characteristics are derived from the minimization of the 

overall energy performance of these systems.  

The simulations of each of the combinations of variable configurations were 

compiled to outline the energy reduction due to a set louvers installed on a residence.  

The louver configuration that performed that best was a depth of 6 inches, a height of 8 

inches, an offset of 0 inches, and a width of 4 inches.  This louver configuration reduced 

the energy consumption of the model house 17% compared to the same house model 

without a louver array.  All of the simulation outputs were compiled to create the Louver 

Configuration Input Program, to allow a user to input continuous values within the range 

of variable and be output an estimate of energy loading.  
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NOMENCLATURE 

d 
Depth- The distance between the tip of the triangular louver and the 

point of the louver nearest the structure (in). 

h 
Height- The distance between the lower louver and the next subsequent louver in 

an array (in). 

o Offset- The distance between the back of the louver and the structural wall (in). 

w Width- The distance between the top and bottom of a louver (in). 

δ 
Solar Declination Angle- The angle between the equator of the planet and the 

equator of the celestial sphere (deg). 

n Day of the year- The numerical date of the year. 

hs 
Solar Hour Angle- The angle of sun in the sky compared to the zero point of 

solar noon.  Sign convention is before solar noon is negative (deg). 

Solar 

time 
Solar Time- The time of day in 24 hour format (hour). 

θ 
Solar Altitude Angle- The position of the sun in the sky relative to the viewer 

latitude, day of the year, and time of day (deg) 
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1. INTRODUCTION 

1.1 THESIS OVERVIEW 

This thesis has outlines the use of passive solar shading techniques in practice 

today to determine the use and applicability of such systems in the Midwest region of the 

United States.  This research examines a location in Rolla, Missouri (Figures 1.1, and 

1.2), a region representing the Midwest climate prone to large fluctuations of temperature 

between the seasons and high daily changes in temperature, according to the National 

Oceanic and Atmospheric Association (NOAA).  

 

  

 
 

1Figure 1.1.  Rolla, Missouri in Reference to the United States 

 

 

 

This research was completed to better understand the relationship between solar 

gain and its application in residential buildings, as well as the inherent benefits and issues 

with using natural energy sources, by way of passive energy strategies  
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2Figure 1.2.  Rolla, Missouri in Reference to the State of Missouri 

 

 

 

The optimization of these passive strategies is unique within the Midwest due to 

the effect to the interior climate on all the four seasons.  According to the National 

Climatic Data Center (NCDC) at NOAA (2012), Rolla, Missouri, as a representative 

Midwest, can range in exterior temperature throughout the year from an average annual 

high of 75.3° F in the summer season to an average low of 33.4° F within the winter 

season, across the thirty years of collected data for the site, with an annual average of 

55.1degrees F, as seen in Table 1.1.   

 

 

1Table 1.1.  NOAA NCDC Weather and Climatic 

 

STATION DATE 

Annual 

Average (°F) 

Autumn 

Average 

(°F) 

Spring 

Average 

(°F) 

Summer 

Average 

(°F) 

Winter 

Average 

(°F) 

GHCND: 

USW00013997 

1981-

2010 55.1 56.5 54.8 75.3 33.4 
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This climatic data, accessed from the Climatic Data Online (CDO) database of all 

of the NCDC and NOAA (2012) weather stations, was taken for the Vichy National 

Airport, in Vichy Missouri.  This station was chosen to highlight the weather data within 

the region, rather than the station in Rolla, due to its longer availability of historical 

weather data.  This study provides a model that illustrates the benefits of passive cooling 

through passive louvered shading devices during the summer seasons, and also 

demonstrates the issues associated with louvered shading, rejecting beneficial solar gain 

within the winter seasons.  The thesis has examined horizontal passive louvers, and their 

effectiveness as a sun shading device, and has optimized, the louver and array 

characteristics to minimize mechanical energy demands for heating and cooling systems.        

1.1.1. Passive Louver Shade.  Passive louver shading systems are defined as a 

series of fixed, horizontal or vertical extensions of a building’s façade, used to reflect 

direct insolation away from a building’s interior.  A louver shading system affects many 

of the interior environmental systems of a building, as well as the aesthetic of a building’s 

façade.  The most commonly affected systems within a building’s envelope are the 

building’s heating, cooling, and lighting systems.  A louver array, or a patterned series of 

louvers, can be built into a structure’s façade, acting on the main purpose to reduce solar 

energy entering the space.  In many cases, louvers are placed in front of fenestration or 

glazed surfaces to maximize the amount of energy rejected from a building.   

A louver array is most commonly placed on the exterior of fenestration surface 

because these surfaces allow the greatest percentage of energy to pass into and out of a 

building.  In some cases, louvers are made to span full lengths of buildings, covering both 

fenestration and façade, as was the case chosen for this research.  (Figure 1.3).   
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This technique is generally performed to integrate the passive solar louver installation 

into the façade aesthetics.   

 

 

 
 

3Figure 1.3.  A View of the 2009 Solar House and Its Full Façade Louver Array 

 

 

 

The goal for an optimized louver array is to passively reflect the sun’s energy 

away from the building during the summer months, thus reducing the demand on the 

cooling system, while permitting direct solar gain to be unimpeded during the winter 

months thus, reducing the demand on the heating system.  From a systems' energy 

perspective, the best case scenario would be to shade all the fenestration of the building 

during the cooling months.  This would in direct effect remove all solar gain from the 

interior of the building.  During the heating months, revealing all the fenestration, to 

provide the greatest benefit to the interior conditioning of the home from direct solar 

gain.  This option for most fixed louver cases is unreasonable, due to the fact that the 

scale at which most of the systems are implemented is too large to economically validate 

the installation and removal of an entire façade biannually for each season.  Other 

attempts have been made to automate or control a louver array, to produce this seasonally 
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optimized effect, but this concept is considered a dynamic louver array, and is outside the 

scope of this research.  

The option that most louver designers use, in lieu of full scale façade renovation, 

is the geometric optimization of their arrays, according to the Nysan Solar Control 

Company’s article on louver and sun shading devices (Nysan, 2012).  Louver array 

optimization is derived from the understanding of the energy demand with and without 

the louver array.  By understanding the seasonal energy requirement of each of the 

conditioning systems, both heating and cooling, the array can be optimized to minimize 

the cooling load, while maintaining or negligibly increasing the heating load.  The 

decrease in cooling load is proportional to the amount of solar heat gains that are rejected 

from the building envelope, either through the fenestrations surfaces or the façade.  This 

decrease is a direct effect of the louver array ability to reject energy from the house.  This 

work has attempted to quantify the amount of energy rejected from the representative 

Missouri home, by the comparison of the home with and without an optimized array.  

The heating load is a direct effect of the solar gains incident on the home.  The goal of an 

optimized array is to find the balance point between mitigating summer heat gains, and 

allowing winter heat gains into the building envelope.  The array geometry design is 

crucial to the discovery of this balance point.  The optimization of this array is dependent 

on the geometric shape of the louver and the array, and the solar gains incident on the 

site, based on the location and latitude of the building.   

The geometry of the louver and the array is significant to the effectiveness of the 

system and its ability to shade during the cooling months, April - September, and allow 

energy to pass during the heating months, October - March.  The key aspects of louver 
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geometry are the depth and width of the louver.  For these variables, the louver can be 

considered within a 2 dimensional plane.  The depth of the louver is the distance between 

the louver’s back and the tip.  The depth is representative of critical to the amount of 

shade a single louver can provide.  As the louver top and bottom are at the same angle 

with the vertical, the profile of a louver can be considered as a triangle.  The section view 

of any louver displays the width and depth of an individual louver.  Figure 1.4 displays 

the section or profile of a louver, and highlights the 2-D elements of the louver, its depth 

and width.  These characteristics can be shown on a single louver and are the building 

blocks of the louver array.  The depth and width are the variables that define how energy 

is reflected away from a single louver.   

 

 

 
 

4Figure 1.4.  The Section View of a Louver displaying Depth and Width 

 

 

 

The width is the distance between the outermost edges of louver, nearest to the 

building.  The width of the louver is set by the manufacturer for ease of manufacture or 

aesthetic. 

The two other important factors of the louver shading system are the parameters 

surrounding its array design.  The two factors of array design include the height and the 

offset.  To illustrate the height and offset, at least two louvers in the array must be 

Depth “d” 

W
id

th
 “

w
” 
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designed, as seen in Figure 1.5.  The height of the array is the distance between the tips of 

the individual louvers.  This height characteristic sets the amount of shading possible for 

each season and also the number of possible louvers can be included within the array.  

Much like the depth of an individual louver, this design criterion is closely tied to the 

seasonal solar angles as well as the latitude of the building, and is further explained in the 

Solar Geometry section.  

 

 

 
 

5Figure 1.5.  The Section View of the Louver Displaying the Height and Offset 

 

 

 

The array offset is the distance between the building and the louver array.  The 

effect of the offset is most noticeably recognized within the heating months, October 

through March.  The offset facilitates a greater amount of solar energy to enter the 

interior space as compared to an array without an offset.  The offset also facilitates an 

ease of installation, making the distances between louvers a uniform connection point 

Height “h” 

Offset “o”  
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along the length of the array.  The length of the array is one of the factors that will not be 

considered within this work.  Although the length is an important portion of the array 

design, this research has maintained an array length equivalent to the experimental 

building.  The length of the array is the physical distance of a louver from one end to the 

other.  Figure 1.6 showcases the length of a louver in comparison to the louver sectional 

characteristics like the depth and width.  As an apparent factor in the design of the length, 

the effect of the incident solar energy is predominantly dependent on the solar geometry 

of the site.       

 

 

 
 

6Figure 1.6.  Length of Louver Array- Front View 

 

 

 

A building’s heating and cooling load is defined by a building’s passive and 

active systems and the built environment.  Each of these systems is present within the 

building to control some natural environmental effect.  The environmental factors that 

these systems attempt to mitigate include the exterior temperature, humidity, wind effect 

and solar gains that surround the building.  As a building system, the installed louver 

array will reject excess solar gain during the summer months and the building’s 

Length “l” 
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mechanical systems will condition the interior environment and insulate the space.  The 

mechanical systems are generally considered to be a static factor of the system once the 

construction and implementation have been completed, whereas, the environmental 

factors of the system are constantly changing according to daily and seasonal trends.  

Lechner (1991) describes the environmental factors have the ability to change constantly 

throughout the year, but they change according to a set pattern derived from the Earth’s 

heating and cooling cycles, the seasons, and the celestial mechanics of the solar system, 

as they apply to the Earth’s solar gains.   

The environmental factors that were examined within this research all correspond 

to the effects associated with temperature, namely seasonal changes in temperature, 

incident solar energy on the site, and accessible solar energy to be used within the 

building as light or heat.  Temperature changes due to season can be considered to be 

reasonably predictable according to the weather history of the site, which is available 

through the NCDC and NOAA (2012).  Foregoing any climate change developments, the 

temperature of an area can be estimated from historical data and seasonal trends.  

Although for the Midwest region, the change from winter to summer temperature can 

range from 62 degrees F, based on the composite thirty year weather history provided by 

NOAA (2012), the seasonal temperatures remain consistent for the past 30 years.     

Direct and indirect solar gains on a site are dependent on the revolutionary cycles 

of the Earth, as well as, its orbit around the sun, and the site’s weather conditions at any 

given time of day.  Specifically these factors are brought about within the change of 

season, change in day to evening, and the cloud cover.  These factors are crucial to the 

development of passive strategies and are linked to the solar geometry of a site.  The 
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geometry of the site is one of the key parameters for the optimization of a passive louver 

shading system, and is the basis for the relationship between the site, the building, and the 

incident solar gains.  Solar Geometry is a broad term for the direction and angles of the 

sun’s direct beam insolation with the Earth, in this case, the building and louver array.  

By understanding the level of solar gains that a building can expect, the building’s 

mechanical systems can be sized accordingly to utilize the passive strategies, either in 

regard to the heating and cooling of the building, or at least during the day, the lighting of 

the space.   

    The factors that reduce or block the amount of solar energy incident on the site 

are outside the scope of this work, but are another factor in the amount of incident solar 

energy available for use.  These factors include natural factors, manmade factors, and 

reflection.  A good example of both a natural and manmade factor is cloud cover.  

Whether the cloud cover is natural, or manmade, in the case of smog, cloud cover will 

reduce the energy incident on the site.  Reflection is also a factor that has not been 

considered within this level of research.  Figure 1.7 Kambezidis (2012) on Solar 

Resources highlights the losses due to reflections from natural sources.   
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7Figure 1.7.  The Natural Reflection of Solar Resources 

 

 

 

Reflection off the ground, as well as, nearby objects could have a beneficial effect 

to the louvers, but its indirect nature is only relevant to specific locations and thus has 

been neglected from this work.  The restriction of these auxiliary factors has greatly 

simplified the solar geometry calculations for the calculations of solar gains.  

The position of the sun can be derived from two equations, the solar altitude and 

the solar azimuth (Figure 1.8).  The solar altitude is the angle between the horizontal at 

certain latitude and a line to the center of the sun.  The solar altitude can be described as 

the “height” of the sun in the sky.  The solar altitude is a straightforward calculation 

relying primarily on the latitude of the location, the time of day, and the day of the year.   
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8Figure 1.8.  Solar Altitude and Solar Azimuth 

 

 

 

As referenced by Lechner (1991) and Kambezidis (2012), the calculations for the 

position of the sun are set for the latitude, day of the year and time of day, the amount of 

solar insolation, or the solar radiation incident on an area per a finite amount of time, can 

be calculated for the site.  The amount of insolation incident on the latitude is directly 

proportional to the generation of heat according to the heat absorption coefficients of the 

incident material.  A material that is able to absorb the energy will tend to increase its 

internal temperature, and will radiate heat to the area around it.  In this case, the solar 

energy incident on the site at the building’s latitude will enter the building through the 

fenestration areas first, followed by the facade areas, and strike a surface material.  The 

solar energy will be absorbed by the material and raise its internal temperature.  The 

material will then begin to radiate that heat into the building space, raising the air 

temperature through radiation.  By controlling the amount of solar energy that enters a 

building, a louver array can passively affect the heat and cooling cycles of a building, on 

a daily, monthly, or seasonal calendar.  This information taken from the early calculations 
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can give a passive louver system designer the opportunity to access the effective 

dimensions to either reject or accept the solar light and heat, to fit the designed space.  By 

optimizing the louver dimensions, in terms of depth and width, and the array dimensions 

in terms of height and offset, in conjunction with the solar geometry throughout the year, 

this research has generated a systematic approach to the minimization of the necessary 

artificial cooling load on a building by rejecting the heat introduced by solar energy 

during the cooling months, while reducing the loss of beneficial solar heat gain during the 

heating months.  Although this research has been generated for a Midwest climate, the 

principles and elements work in most warm, solar heat driven climates.  The benefits to 

cooler climates are less apparent due to a necessity for increased heating loads rather than 

decreased cooling loads.   

By determining the optimal array geometry for the fixed louver system, a building 

can reject unwanted summer heat, accept necessary winter heat, and reduce direct glare 

from daylighting applications.  This concept has been further illustrated in an example of 

optimized geometry, as depicted in Figure 1.9.  These passive strategies of passive 

heating, cooling, and daylighting without glare, reduce a significant portion of the energy 

demand in a building.  The reduction in energy demand across the year is the premise and 

metric by which the optimization has been accomplished.   
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9Figure 1.9.  An Optimized Louver Array 

 

 

 

This research suggests that an optimized louver array is the combination of louver 

geometry and array geometry that, when introduced into a building system, will create 

the most dramatic decrease in energy load for the heating and cooling systems across the 

year.  As the most prominent and largest energy loads within a building tend to be the 

heating and cooling loads, it is the hypothesis of this research, that an optimized solar 

shading application has the potential to reduce the amount of energy used for cooling, 

while minimally affecting the heating demand.  

1.1.2. United States Energy Statistics.  According to the United States Building 

Energy Data Book (2012) issued by the Department of Energy, the United States 

accounted for 19% of the world’s energy consumption in 2010.  Figure 1.10 from the 

Summer Sun  

Winter Sun  
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Building Energy Data Book distributes the world’s energy consumption, and the sectors 

of that have consumed this energy.  

 

 

 

10Figure 1.10.  The Graph of World and US Energy Consumption 

 

 

 

  The residential sector accounted for 22% of the country’s energy demand in 2010.  

Of that total amount of energy, Figure 1.11 broke that 22% into its respective 

consumption end consumers.  (Building Energy Data Book, 2012)  

Of the 22% used for residential energy, 45% for the energy was consumed for 

heating and 9% for the energy cooling of the house.  Also, the commercial sector 

accounted for 22% of the country’s energy demand in 2006 as seen in Figure 1.10, with 

27% consumed for heating and 10% consumed for cooling of the commercial sector as 

seen in Figure 1.12.  (Building Energy Data Book, 2012)   
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11Figure 1.11.  Residential Energy End Use 

 

 

 

 

 

 
 

12Figure 1.12.  Commercial Energy End Use  

 

 

 

With this energy consumption information in hand, it might have seemed to have 

been more beneficial to focus on reducing the heating load rather than minimizing the 

cooling loads, but the energy consumption, is not specifically representative of the 

expenditures for that energy.  Tables 1.2 and 1.3 highlight the same material from the 

Building Energy Data Book of the Department of Energy, but consider the price of the 
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energy instead of the quantity in comparing the average fuel source of the energy. 

(Building Energy Data Book, 2012) 

 

 

2Table 1.2.  Residential Expenditures for Energy by Fuel Source 

 

 
 

 

 

The reason this research focus on minimizing cooling costs was because cooling 

for both residential and commercial applications is performed almost exclusively with 

electricity, while the space heating has a multitude of options for fuel sources.  

The amount of energy being used to heat and cool buildings, either residential or 

commercial, is dependent on a large number of variables, which can be broken into two 

groups: functional usage, and energy usage.  Functional usage in a building corresponds 

to what the building is used for, and what systems maintain the quality of service within.  

This is a very easy qualification for a residence, mostly broken down into size of the 

building, but the actions within the residence are limited to what can be done within a 

home.  On the other hand, a commercial building can have a highly varied work quality, 

Natural

Gas Distil. Resid. LPG Other Total Coal Electricity Total Percent

Lighting 35.4 35.4 19.7%

Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3%

Space Cooling 0.4 25.0 25.3 14.1%

Ventilation 15.9 15.9 8.9%

Refrigeration 11.6 11.6 6.5%

Water Heating 4.0 0.6 0.6 2.7 7.3 4.1%

Electronics 7.8 7.8 4.3%

Computers 6.3 6.3 3.5%

Cooking 1.6 0.7 2.3 1.3%

Other 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6%

Adjust to SEDS 6.2 5.2 5.2 0.6 12.0 6.7%

Total 29.9 9 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100%

2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) 

Petroleum
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and in some cases can be independent of size.  In other words, an office building and a 

warehouse may be the same size, but have incredibly different needs in terms of heating 

and cooling.   

 

 

3Table 1.3.  Residential Expenditures for Energy by Fuel Source 

 

 
 

 

 

Qualifying the needs of the functional usage is critical into determining the 

benefit of energy savings.  The other variable group that can define a buildings energy 

profile is the energy usage group.  This group of variables corresponds to the way that 

energy is handled within the space.  The way that energy is brought into the space, 

maintained with the space and rejected from the space, are all key variables to the energy 

usage classification.  In a building, energy can be brought into the space through a few 

methods, either through delivered energy; solar energy incident on the building, or fuel 

energy consumed within the space, or through electricity brought to the site.  Energy is 

maintained is a building through its ability to restrict energy from escaping the envelope.  

Natural

Gas Distil. LPG Total Coal Electricity Total Percent

Space Heating 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9%

Space Cooling 0.0 35.4 35.4 14.0%

Water Heating 14.3 2.1 2.0 4.0 14.2 32.6 12.9%

Lighting 22.6 22.6 9.0%

Refrigeration 14.9 14.9 5.9%

Electronics 17.8 17.8 7.1%

Cooking 2.4 0.8 0.8 6.0 9.2 3.7%

Wet Cleaning 0.6 10.7 11.3 4.5%

Computers 5.6 5.6 2.2%

Other 0.0 4.4 4.4 6.7 11.1 4.4%

Adjust to SEDS 13.6 13.6 5.4%

Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100.0%

2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion)

0.5

0.5

Petroleum

Kerosene
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The easiest way to understand this concept is through the example of insulation.  

Insulation maintains a barrier between the exterior energy trying to get in and the interior 

energy trying to get out.  The insulation restricts or slows the flow of energy from the 

high level to the low level.  Energy rejection explains the route of energy out of the 

building, generally through an action.  Simple air conditioning pulls energy, in the form 

of heat, from the air inside the building and deposits it on the outside of the envelope, 

rejecting the energy from the space.  

 For almost all the buildings built to today standards, the control and manipulation 

of each of these systems are commonplace, but it is just getting to the point where control 

for solar heat gain, as an architectural feature, is becoming prominent within the building 

design process.  According to External window shading treatment effects on internal 

environmental temperature of buildings, (Offiong, 2004) solar heat gain and the effects of 

shading devices on solar heat gain are two critical design criteria necessary within the 

building design.  The increase in energy costs in the last decade has pushed the 

development and in many cases rediscovery of these passive techniques to control light 

and heat ability to enter a building envelope.  The invention and rediscovery of many of 

these techniques can be traced back to the earliest days of architecture, but had been lost 

to the advent of custom buildings and cheap energy of the late 20
th

 century.  

Passive solar shading techniques are not a new concept, and in many ways are 

reemerging across many architecture styles.  Passive architecture and the concept of solar 

shading have been in existence since the earliest days of recorded architecture.  Elements 

of passive architecture and light and heat control techniques can be seen in most 

historical designs (Lechner, 1991), throughout many regions of the world including: 
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Ancient Greece, utilizing shading colonnades, Asian, employing large overhangs to shade 

and cool, as well as indigenous American like seen in Figure 1.13, mainly of the 

Southwest region, as well as similar techniques used in India.  Many of these societies 

used that built with passive architecture did so to remedy the extensive heat load of the 

building, before any kind of cooling systems  had been developed.  These cultures 

derived many of these techniques from the natural environment they lived in, and these 

techniques that, today, have been scientifically proven have all been formed from an 

early understanding of a buildings interaction with its environment, both climate and 

solar gain potential.   

 

 

 
 

13Figure 1.13.  American Indian Homes Employing Shading and Insulation Techniques   

 

 

 

Across the United States, the ways that homes are heated and cooled varies 

significantly on the type of systems implemented.  This variability of these systems is 

dependent upon the location and the apparent climate of the residence.  In essence the 

systems designed to heat, cool, and light a building are in many ways dependent on 

regional architecture and design.  This analysis of a passive louver shading system in the 
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Midwest has highlighted the most prominent benefits to a passive louver shade, in terms 

of summer heat rejection and winter heat gain, for this climate and location of solar gain 

potential.   

1.1.3. Simulation Modeling.  The variability and time sensitivity of collecting  

climatic and seasonally based data, like heating and cooling loads of homes, employs a 

unique challenge to research that does not have years to collect data or a multitude of 

homes to conduct experiments upon.  This challenge has been remedied within this work 

by the introduction of an energy simulation model.  This model has the ability to create a 

digital representation of a building, including the prominent characteristics of the home, 

such as size, shape, insulation, etc. and subject that home to the climate, weather and 

solar patterns incident on the site.  In a similar study, (M. David et al., 2011), research 

conducted on a simulated home used a multitude of different louver array designs and 

several years of weather conditions, to understand the effect of the solar gains on the 

mechanical systems of the home and the effect of the louver array on the energy demand.  

Similarly, the development of an optimized geometric passive louver array for the 

Midwest climate will introduce a passive technique for building energy efficiency and 

development of non-energy dense HVAC systems.  An energy simulation is a computer 

model of a building, with representative materials, building geometry, mechanical 

systems, environmental loading, and scheduled use.  This model can simulate the actions 

and response of the building prior to it being constructed, to validate theories in 

construction techniques, heating and cooling demand, and other building response 

effects.  The benefits to generating a simulated model is the chance to examine how a 

building will respond to its environment and how it the needs of the building can be met.  
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Simulation modeling also reduces the need to build and examine situations in the real 

world that can be easily altered in the digital space.  There is no replacement for 

experimental and empirical data, but simulation modeling generates the closest account to 

what would actually happen in the real world.  This research has taken a building within 

the Midwest, specifically within the city of Rolla, Missouri, and modeled this existing 

building including its in-situ louver array.  While the geometry of the building and the 

geometry of the louver array are paramount to considering the effect of the louver array 

on the heating and cooling loads of the house, the house’s mechanical systems are of 

lesser concern and were modeled within the work to represent ideal loads.  This was done 

to facilitate the speed of the simulation modeling, as well as, to ensure a simple 

understanding of the energy entering and leaving the building.  Simulation modeling can 

predict the factors incident on a building prior to the construction, allowing designers or 

engineers to plan for beneficial natural effects to heating and cooling, thus reduce the size 

of the necessary mechanical loading.  Minimizing the mechanical heating and cooling 

system prior to the construction of a building reduces the cost of the unit’s up front cost 

and the operating cost of the systems over its lifetime.  To compare the effects on the 

heating and cooling systems, the building was modeled using identical models of the 

house without a louver array as the baseline compared with a series of models to optimize 

the louver system characteristics.   

This research has explored the installed louver array at the Missouri University of 

Science and Technology (Missouri S&T) entry into the US Department of Energy 

(USDOE) Solar Decathlon 2009.  This residence as seen in Figure 1.14 competed in the 

USDOE Solar Decathlon employing a number of passive strategies, one of which was a 
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passive louver system on the south façade.  This building has been modeled to simulate 

its’ passive energy profile using the energy modeling software system, Energy Plus.   

 

 

 
 

14Figure 1.14.  Missouri S&T 2009 Solar House. 

 

 

 

This house was used the example within the Midwestern climate and was used as 

the test case residence to optimize the array geometry of the existing system, based on 

parameters such as: site latitude, louver geometry, time of day, and time of year.     

1.1.4. Energy Plus.  Energy Plus is an energy analysis and thermal load  

simulation program .  The goal of these simulations is to model the effects in a virtual 

space to understand the restrictions and benefits inherent in a project.  This research used 

a simulation model of the 2009 Solar House at the Missouri University of Science and 

Technology or Missouri S&T to model the effects changing the geometry of a louver 

array.  Without manipulating a physical array within the real world, the model is able to 
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determine the changes in the energy delivered into the space, while all other factors 

remain the same.  The energy allowed or rejected into the space is directly affected by the 

level of shading the louver array produced of the façade and fenestration surfaces of the 

home.  By systematically varying the design characteristics of the louver and array, the 

energy demand of the systems within the house can be analyzed by maintaining all other 

variable constant within the model.  To ensure the model accurately represented the real 

world version of the 2009 Solar House, this model was validated against the experimental 

data collected from a past project.  This data included the internal and external 

temperature of the space.  By validating the model, the research was able to compare the 

physical data against the effects of the louvers and their array geometry.   

1.1.5. Passive Louver Array Optimization.  With this simulated residence,  

validated against an existing home, in a Midwest region of the United States, the array 

was geometrically optimized to prioritize the energy demands of the home, in regard to 

the solar gain profile of the house.  This solar gain profile represents the effective heat 

generation capabilities of the building with respect to the season and climate.  This 

research has varied the design characteristics of the each individual louver, in terms of 

depth and width, and the geometry of the louver array, in terms of height and offset, to 

converge upon a systemic design according to minimizing the energy requirements of the 

building.  The simulation model has varied the combined design characteristics of the 

system to minimize the necessary annual energy demand of building’s heating and 

cooling systems.  The system components that were varied to attain minimizing 

convergence of the buildings energy demand included: depth, height, offset, and width.   
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The process of the research, the results of those simulations, and the conclusions 

drawn from that body of work have been compiled within this thesis.  The methodology, 

experimental procedure, and convergent results of the research are also included within 

this body of work.     

 

1.2 LITERATURE REVIEW 

 In a previous research study of a model to evaluate solar heat gain through an 

equation to develop an interior absorption coefficient dependent upon the three factors 

apparent with incident solar energy (Oliveti, Arcuri, Bruno, and De Simone, 2010).  The 

energy transmitted through the glazed surface, the absorbed gains directly from direct 

beam solar energy, and the energy absorbed through the reflected and diffuse solar gains 

within the space were examined.  This paper view renders the incident energy as an 

internal heat gain.  The understanding of the research aids in the determination of the 

solar heat gains as source of energy in the building.  This research also demonstrates the 

need for passive shading devices in order to manipulate the amount of energy transmitted 

to the glazed surface and eventually absorbed.     

In a similar study, researchers examined effective absorption coefficient of a 

sunspace adjoining an interior space (Oliveti, De Somine, and Ruffolo, 2008).  The 

research viewed simple geometries, compared various orientations, and fenestration 

percentages.  It also accounted for the latitude, volume of the investigated space, type of 

glass, and exposure of the fenestration surfaces.  This work evaluated the ability to 

showcase the solar gain potential through an absorption coefficient using simplified 

models.  This paper simulated their model across an average year of weather data 
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according to the location and latitude of the model.  With this information in hand, the 

concept that window placement and fenestration type are once again validated against the 

amount of solar gain.  The latitude and incident weather of the location again also play an 

important role in the generation of solar gains to the building.  In many ways, this work 

supported the effect of louvers as a sunshade device dependent on latitude, building 

geometry, and orientation, even though shading is not a topic breached within this 

research.    

In a previous study, researchers examined the implementation of a fixed shading 

device during the summer months of the year within a tropical climate (Offiong,2004).  

The work looks at multiple different applications of fixed exterior shading devices, 

including simple overhangs, reveals, and side fins.  Although these shading technologies 

are not fixed louvers, the shading devices represented follow many similar design 

characteristics, in terms of solar geometry and the devices ability to block incident gains 

into the building.  In many ways, this research is similar to this thesis in regard to the fact 

that it focuses on one unique climate.  This work differed from the thesis in terms of the 

concept that a horizontal louver array was not considered for a shading device, and there 

was no attempt at full system modeling of the building with the shading devices.  

In 2011, researchers used multiple configurations of differing solar shading 

applications were applied to a simple rectangular geometry (M. David, 2011).  These 

differing systems included a Simple overhang, an overhang of infinite width, a simple 

overhang with rectangular side fins, and a simple overhang with triangular side fins.  

Although none of these are a louver array, the method of conducting the test and the 

simulation within the simulation engine, Energy Plus, was similar to this research.  The 
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research did examine a tilted louver array on the West side, but their research focused 

primarily on the tilt angle and not of the critical dimensions of a horizontal flat louver. 

In a different study, researchers examined two configurations of louver shading 

systems, including tilted horizontal, and tilted vertical installations (Palmero - Marrero, 

and Olivera, 2010).  In their work, they use a differing naming convention then this 

research has found in other articles involving louvers.  The research defined a horizontal 

louver as a louver that is perpendicular to the wall placed above the fenestration surface, 

much like a classic overhang split into parts.  They define a vertical louver array much 

like this work has described a horizontal array, as a series of horizontal louvers in plane 

parallel to the face of a fenestration surface.  This work also examined the angle of tilt 

rather than the flat critical dimensions.  This research study used a different simulation 

engine, TRNSYS, for their simulation calculations.  This work also examined key 

latitudes and cities across the globe.  

Another previous research study examined a similar horizontal louver array 

configuration to the examples within this research (Janak, 2003).  This work focused on 

an office complex within simple rectangular geometry with a South façade of full 

windows.  The researcher is quoted as saying that “Solar radiation is one of the most 

significant energy fluxes contributing to the thermal zone energy balance.”  This work 

used the energy modeling program ESP-r as its main simulation engine and the Radiance 

energy program to calculate their energy demand and louver shading characteristics.  

Depth of the louver was the only dynamic system characteristic within this work.  The 

main focus was the research of this situation between the two energy modeling programs 

ESP-r and Radiance.   
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Researchers in the past have examined another shading technique using an energy 

modeling approach (Dubois, 2000).  This study employed external overhangs within this 

research to attain the shading goals for the office building that was the focus of the work.  

The research examined a shading coefficient of the windows, as a factor of the internal 

heat gain, rather than using ideal conditions for mechanical systems, as was attempted 

within this research.  The work also reported the difficulty of maintaining a shaded face 

during the times of the year when it was necessary, summer cooling months, while 

discouraging the loss of winter solar heat gain.  

In a previous study highlighting an area with an immense cooling load, 

researchers have considered the application of side fins and upper overhangs to a simple 

building model in Energy Plus to lower the effective cooling load by reducing transmitted 

solar energy (Abdulsalam, 2011).  Using Energy Plus, this research has model a simple 

office building and has placed a series of overhangs or fins on each window facing out to 

the cardinal directions of North, West, East, and South.  They have also compared the 

effect of a window above the Iranian building codes to minimize losses from the 

fenestration surfaces.  The work created outputs and suggestions for each cardinal façade 

face and what to do to minimize the cooling loads and losses.      
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2. METHODOLOGY 

2.1 SITE DEPENDENT CHARACTERISTICS 

2.1.1. Latitude.  The simulation parameter derived from the latitude is necessary 

to determining the incident solar of the site.  The latitude is also a variable vital to the 

understanding of the weather of the area, in regard to the type of micro climate the site is 

placed, such as tropical, temperate, or otherwise.  These simple weather types and solar 

potential can be derived almost directly from latitude, as seen in Figure 2.1 (Kambezidis, 

2012).   

 The latitude is the measurement that runs east and west, above over below the 

equator, which defines the North to South location on the face of the Earth.  Solar 

geometry is similar, independent of weather, around the entire planet.  In other words, the 

potential solar gains on one side of the planet are the same as the other side of the planet, 

along the same latitude lines, foregoing any weather effects.   

 

 

 
 

15Figure 2.1.  Solar Radiation Potential of Earth 
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In this research, the latitude was determined by the physical location of the house 

that was used to validate the model.  The experimental data recovered from the house’s 

data collection system was directly connected to the latitude, through the microclimate 

the house was in.  It would be possible to change the latitude of the simulated model, but 

that approach is outside the focus of this research and would be unable to validate the 

finding against known experimental data from the physical house. 

This model used a latitude central to Rolla, Missouri of 37.9 degrees.  This 

corresponds to the climate and solar potential available to Rolla, Missouri, the location of 

the modeled building, as well as, the NOAA NCDC data that was collected for the 

weather analysis (NCDC, 2012).  The latitude of the research will also be a critical factor 

in determining the components of the solar potential, including the solar altitude and the 

solar hour angles of the site.  

2.1.2. Solar Declination Angle.  The solar declination angle is the angle  

between the direct beam solar energy and the equator.  During the Earth’s revolution 

around the sun, the orbital tilt of the planet stays consistent.  This orbital tilt creates 

disparity between the seasonal declination angles, as seen in Figure 2.2 (Kambezidis, 

2012).  During the summer cooling months, the declination angle is positive, meaning the 

angle between the Earth’s equator and the direct beam is positive.   
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16Figure 2.2.  Diagram of the Planetary Sphere and Celestial Sphere 

 

 

   

This celestial event occurs during the aphelion portion of the Earth’s revolution 

around the sun, or the point within the sun is the furthest from the sun.  During the winter 

heating months, the declination is negative, and occurs during the perihelion; or time 

when the Earth is closest to the sun.  The declination gradually changes throughout the 

year.  The extremes of the declination are found during the equinoxes of the season.  The 

most negative declination angle occurs during the winter solstice, yearly occurring on or 

around December 22.  The equation for the solar declination angle, in Equation 1, utilized 

the day of the year as the only reference to the declination.  In regard to louver geometry, 

this extreme corresponds to the time of the year when the greatest amount of solar energy 

will be allowed to pass through louver array and the least amount of the façade or 
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fenestration surfaces will be blocked or shaded.  Table 2.1 highlights the declination 

angle of the incident solar energy against the equinoxes and solstices.   

 

 

           (
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The design of the louvers takes this winter angle characteristic into the design to 

minimize the rejection of beneficial solar gains.  The other extreme of the declination 

angle occurs during the summer solstices, on or around June 21.   

 

 

4Table 2.1.  List of Declination Angles against Celestial Dates 

 

 
Winter Solstice 

Vernal 
Equinox 

Summer 
Solstice 

Autumnal 
Equinox 

Date December 22-23 March 22-23 June 21-22 September 22-23 

Declination Angle 
(deg) 

-23.45 0 23.45 0 

 

 

 

This altitude angle corresponds to the highest solar altitude angle, or the greatest 

angle between the latitude’s tangential horizontal and the direct beam solar energy.  This 

high angle is the design characteristic for the summer cooling months and when the least 

amount of solar energy should be allowed into the building.  This is the design input that 

emphasizes the rejection of heat and energy from being allowed to pass into a building.  

The balance of these two characteristics in the design of a passive louver array system is 

vital to designing an array that is able to perform well during both the winter and summer 
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months.  Figure 9 illustrates the application of a louver assembly with the extreme 

declination angles at the winter and summer solstices.  

2.1.3. Solar Hour Angle.  The solar hour angle is the angle that corresponds  

to the hour of the day.  This variable is used in many solar geometry calculations to 

describe the sun’s movement across the sky during a day.  The illustration in Figure 2.3 

highlights this affect from 6:00 AM until 2:00 PM, with the corresponding angle.  The 

sign convention used within this work is that the solar hour angle is decreasing negative 

degrees from sunrise to noon, 0 degrees at noon, and increasing positive degrees from 

noon to sunset.  Solar hour angles range from -180 degrees to 180 degrees, but for most 

solar geometry calculations only the angles from sunrise to sunset are considered.  The 

equation for the solar hour angle can be viewed in Equation 2.  

 

 

 
 

17Figure 2.3.  Solar Hour Angle over the Course of a Single Day 
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2.1.4. Solar Altitude Angle.  The solar altitude is the angle between the direct  

beam of solar energy and the tangential horizontal at certain latitudes.  It can be described 

as the relative elevation of the sun in the sky, with respect to the viewer.  The altitude 

angle is derived from the latitude, declination, and solar hour angle.  Using these site 

dependent characteristics, the location of the sun’s center, or direct beam origin, can be 

determined for any day of the year.  The sun path in Figure 2.4 is a graphic representation 

of the location of the sun across the day.  The location of the sun within the sun path 

graphic is representative of the coordinates defined by the altitude and the hour angle.   

 

 

 
 

18Figure 2.4.  Sun Path 
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The multiple lines are representative of the differing paths through the sky the sun 

takes due to the declination.  The solar geometry and sun path are crucial to the external 

environment of the simulation model.  The equation of the solar altitude angle, in 

Equation 3, accounts for the Latitude derived from the site, the declination described 

above, and the solar hour angle.  Using these simple calculations to verify the simulation 

model characteristics is another way the model can be validated against physical 

experimentation and real world development.     

 

 

       (   (  )     ( )     ( )     ( )     (  ) (3) 

 

L= Latitude 

δ= Declination  

hs= Solar Hour Angle 

 

 

 

 

2.2 MODEL INPUT CHARACTERISTICS 

2.2.1. Materials.  All of the prominent building materials used during the  

actually construction of the house were researched and entered into the model.  The 

physical characteristics for each material were included within the model to allow the 

simulation computation to create the most accurate digital representation of the building, 

as possible.  The façade materials were divided into two categories: the surface materials 

and the fenestration materials.  The surface materials were broken into three specific 

materials types, including the floor types, roof type, and wall type.   
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2.2.2. Floor Material and Construction.  The floor was subdivided into two 

zones, to correspond to the two types of flooring within the house, either wood flooring 

or tile flooring.  The Zone 1 floor material was modeled after a composite wood floor of 

three layers.  The layers, in order from outermost to inner most layers, were insulation, 

subfloor, and wood flooring.  The Bathroom floor material was modeled after a tile floor 

in three layers.  The layers, in order from outermost to innermost layers, were insulation, 

subfloor, and tile flooring.  The physical details of each of the materials are highlighted 

within the Table 2.2 for each material, including relevant characteristics like roughness, 

thickness, conductivity, density, and specific heat for the main floor of the building.  The 

material characteristics for the Bathroom floor zone are within Table 2.3. 

 

 

5Table 2.2.  Zone 1 Floor Material Characteristics 

 

 
 

 

 

2.2.3. Roof Material and Construction.  The roof material was modeled as a  

single unit across the entire building.  The roof was modeled to represent a Structurally 

Insulated Panel (SIP), covered on the exterior by a weatherproof membrane and metal 

roofing, and covered on the interior with a gypsum drywall. 

Name Units 

I06 244 mm Batt 

Insulation 1" Plywood Wood Flooring

Roughness Very Rough Medium Smooth Smooth

Thickness m 0.24 0.03 0.02

Conductivity W/m-K 0.05 0.02 0.11

Density kg/m3 19.00 112.13 96.11

Specific Heat J/kg-K 960.00 25104.00 1210.00

Thermal Absorptance 0.90 0.90

Solar Absorptance 0.78 0.78

Visible Absorptance 0.78 0.78
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6Table 2.3.  Bathroom Zone Floor Material Characteristics 

 

 
 

 

 

The layers, in order from outermost to inner most layers, were metal roofing, 

roofing membrane, plywood, expanded polystyrene, plywood, and gypsum drywall 

board.  These materials also included the roughness, thickness, conductivity, density, and 

specific heat into the model to accurately describe the insulation ability of the roof and 

are included in Table 2.4. 

2.2.4. Wall Material and Construction.  The wall materials for the exterior  

walls are the same for all four sides of the façade.  The only deviation from the wall 

construction is the placement of the fenestration surfaces.  The walls were simulated 

using a SIP wall similar to that of the roof material.  The wall materials include, from 

outermost to innermost, the wood siding, weather proofing material, plywood, expanded 

polystyrene, plywood, and gypsum.  The insulation value of the wall composition was 

computed using the characteristics like the roughness, thickness, conductivity, density, 

and specific heat.  Table 2.5 shows these values. 

  

Name Units 

I06 244 mm Batt 

Insulation 1" Plywood Ceramic Tile

Roughness Very Rough Medium Smooth Very Smooth

Thickness m 0.24 0.03 0.01

Conductivity W/m-K 0.05 0.02 1.01

Density kg/m3 19.00 112.13 160.18

Specific Heat J/kg-K 960.00 25104.00 836.80

Thermal Absorptance 0.90 0.90

Solar Absorptance 0.78 0.70

Visible Absorptance 0.78 0.70
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7Table 2.4.  Roof Material Characteristics 

 

 
    

 

 

2.2.5. Fenestration Material and Construction.  The fenestration surfaces,  

or any exterior glazing or window, throughout the façade was created using the same 

fenestration type within the energy model.  As all of the windows in the real building 

share the same characteristics, the models also used the same characteristics for each of 

the fenestration surfaces within the model.  These surfaces are a 3 mm low E clear glass, 

13 mm of argon vapor, and another 3 mm of clear glass.  These materials and vapor 

employed the thickness and solar transmittance as the vital characteristics within the 

model, as seen in Table 2.6. 

 

 

 

Name Units Metal Roofing Roof Membrane 1/2" Plywood

Roughness Medium Smooth Very Rough Medium Smooth

Thickness m 0.00 0.01 0.01

Conductivity W/m-K 45.01 0.16 0.12

Density kg/m3 7680.00 1121.29 545.00

Specific Heat J/kg-K 418.40 1460.00 1213.00

Thermal Absorptance 0.90 0.90 0.90

Solar Absorptance 0.70 0.70 0.78

Visible Absorptance 0.30 0.70 0.78

Name Units 

Insulation: Expanded 

polystyrene - extruded 

(smooth skin surface) 

(HCFC-142b exp.) 1/2" Plywood

G01 16 mm Gypsum 

Board

Roughness Medium Smooth Medium Smooth Medium Smooth

Thickness m 0.14 0.01 0.02

Conductivity W/m-K 0.03 0.12 0.16

Density kg/m3 29.00 545.00 800.00

Specific Heat J/kg-K 1210.00 1213.00 1090.00

Thermal Absorptance 0.90

Solar Absorptance 0.78

Visible Absorptance 0.78
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8Table 2.5.  Wall Material Characteristics 

 

 
 

 

 

2.2.6. Energy Plus.  Energy Plus acts as a simulation translator and engine for  

many modules created throughout the development of the software.  The modules 

specific to this research that are being used within the simulation engine and were the 

precursor to the software Energy Plus, are the software; DOE-2 and its generations.  

DOE-2 is a building energy analysis tool created by a team at Lawrence Berkeley 

National Lab and the Department of Energy.  Building Loads Analysis and System 

Thermodynamics (BLAST) is another software utilized for the building loads and 

thermodynamics of the Energy Plus simulation.  Figure 2.5 is a simple illustration 

explaining the order of operations for the Energy Plus simulation.   

 

 

Name Units F11 Wood Siding 1/2" Plywood

Insulation: Expanded 

polystyrene - extruded 

(smooth skin surface) 

(HCFC-142b exp.)

Roughness Medium Smooth Medium Smooth Medium Smooth

Thickness m 0.01 0.01 0.14

Conductivity W/m-K 0.09 0.12 0.03

Density kg/m3 592.00 545.00 29.00

Specific Heat J/kg-K 1170.00 1213.00 1210.00

Thermal Absorptance 0.90

Solar Absorptance 0.78

Visible Absorptance 0.78

Name Units 1/2" Plywood

G01 16 mm Gypsum 

Board

Roughness Medium Smooth Medium Smooth

Thickness m 0.01 0.02

Conductivity W/m-K 0.12 0.16

Density kg/m3 545.00 800.00

Specific Heat J/kg-K 1213.00 1090.00

Thermal Absorptance 0.90

Solar Absorptance 0.78

Visible Absorptance 0.78
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9Table 2.6.  Window Material Characteristics- Glass and Gas Membrane 

 

 
 

 

 

Beginning with the description of the building by the user, the data is then 

accessed by a group of simulation modules, all computing interdependent calculations, 

drawing results to the heat and mass balance of the simulated building, as well as 

simulating the building as a whole in a virtual space.  Once the computations are 

collected and ordered from each of the modules, the calculations results are output in text 

based, or Comma Separated Values (CSV) formats for greater evaluation by the user.  

Energy Plus has been described as a simulation engine and not as a user interface by 

many of the works describing the software.  For this reason, many third party Energy 

Plus interfaces have been developed in conjunction with the Energy Plus developments.   

 

Name LoE CLEAR 3 MM CLEAR 3 MM

Optical Data Type Spectral Average Spectral Average

Window Glass Spectral Data Set Name

Thickness 0.003 0.003

Solar Transmittance at Normal Incidence 0.630 0.837

Front Side Solar Reflectance at Normal Incidence 0.190 0.075

Back Side Solar Reflectance at Normal Incidence 0.220 0.075

Visible Transmittance at Normal Incidence 0.850 0.898

Front Side Visible Reflectance at Normal Incidence 0.056 0.081

Back Side Visible Reflectance at Normal Incidence 0.079 0.081

Infrared Transmittance at Normal Incidence 0.000 0.000

Front Side Infrared Hemispherical Emissivity 0.840 0.840

Back Side Infrared Hemispherical Emissivity 0.100 0.840

Conductivity 0.900 0.900

Name ARGON 13 MM

Gas Type Argon

Thickness 0.013
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19Figure 2.5.  Illustration Describing the Operations within Energy Plus 

 

 

 

This research did not use any of these third party interfaces for input characteristic 

development.  This work did however use Sketch Up’s open source plug in for Energy 

Plus, Open Studio, to validate the building geometry after input into Energy Plus directly.     

2.2.7. Equations.  Energy Plus utilizes a series of thermal and load  

calculation modules to access the cumulative effect of multiple factors on a single 

building.  Most of the thermal and environmental equations Energy Plus has used to 

compute within this research have been focused on thermal mass transfer through 

materials and solar gain calculations, including incident solar on the site and transmitted 

energy into the building.  Figure 2.6 from the Department of Energy (DOE), Energy 

Efficiency and Renewable Energy (EERE) University Course curriculum exemplifies the 

multiple factors that Energy Plus considers through the simulation modules.  
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20Figure 2.6.  Factors Involved in Analyzing Interior Temperature and Energy 

 

 

 

2.2.8. Building Geometry.  Building Geometry is the relationship of how the  

structure is built and the orientation of the building on the site.  Within Energy Plus, 

building geometry corresponds to the size, shape, scale, and orientation of the building 

and includes the models characteristics, including the building materials and weather 

considerations.  The process of the construction of the building within a virtual space is 

vital to the development of the energy model, in regards to the generation of an accurate 

solar gain profile from the orientation and shape of the building, as well as, the building 

load analysis derived and computed from the exterior environmental factor analysis.  The 

combination of the previous factors into an active energy model, set on a specific site, 

under specific weather conditions, allow for understanding of the building loads 

necessary for the site and the building.  By comparing these simulated load estimates 

against actual experimental data retrieved from the actual house’s monitoring systems, 



www.manaraa.com

43 

the accuracy and validity of the model can be accessed.  This research compared the 

model against multiple test cases of the home to access the validity of the model.    

 

2.3 SIMULATED MODEL VALIDATION 

2.3.1. Test Cases.  The validation tests are the four cases involved within the  

research, used to validate the simulation.  Of the four tests, each features a differing 

response to the amount of energy entering the building.  The four test include the baseline 

test, with no response to the energy incident upon the building, the mechanical systems 

test, employing mechanical control of the temperature of the building, the louver test, 

featuring no mechanical systems, but employing a louver array modeled after the 

experimental building, and finally, the systems case, utilizing both a louver array and the 

mechanical systems.  The systems test has been compared against the experiment to 

assure the validity of the simulation.  The experimental data collected was collected for 

periods within the fall and winter season, and a short period in the spring.  There was no 

data collected during the summer.  The collected data can be viewed in Figure 2.7, as the 

comparison between the exterior and interior temperatures.   

The other tests have been used to understand the role that each individual 

technology played in the amount of energy allowed into the space, and also the 

comparison against the a building retaining no technology, to understand the capabilities 

of a louver array individually.  The test cases are explained in detail below. 
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21Figure 2.7.  Interior and Exterior Experimental Temperatures within the House 

 

 

 

2.3.1.1 Test case 1: simple box case- no mechanical systems, no louver array.   

The box case is the baseline test case.  The simulated results that are found within this 

test correspond to how the building would respond to the environment situation without 

any interference of conditioning systems or passive louver techniques.  The box case has 

high temperature swings throughout the year, but attains a lagging temperature profile 

within the house compared to the environmental surrounds.  The box case’s temperature 

profile is dependent entirely on the external temperature and the solar gain.  The box case 

has no artificial energy use and is considered uninhabitable.  This case is identified by the 

highest interior temperature ranges during the summer months, due to the high external 

heat and solar gains, and low internal temperature during the winter months, due to the 
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external temperature, but addition of the solar heat gains.  The simulated results of the 

Box Case are compared with the Mechanical Case to compare the baseline case to the 

energy necessary to fully heat and cool the space to American Society of Heating 

Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standards, to understand the 

amount of energy necessary to maintain the comfort level.  The Box Case is also 

compared against the Louver Box case to understand the amount of energy removed from 

the system by solely the louver array. 

2.3.1.2 Test case 2: mechanical case- mechanical systems attaining ASHRAE 55 

comfort standards, no louver array.  The mechanical case is the highest artificial energy 

consumer.  The mechanical case used ideal air conditioning and heating systems to 

condition the building to ASHRAE 55 Standards 19.6 degrees C at the lowest, and 25.1 

degrees C at the highest across the year, without any benefit of the solar gain shading of a 

louver array.  The mechanical case is identified by the full temperature regulation 

throughout the year, while also maintaining the largest artificial energy consumption.  

The mechanical case is an example of how most construction has been complete to date, 

assuming little interest in the passive solar strategies.  The Mechanical Case is directly 

compared against the Systems Case to showcase the differential between the 

implementation of louver arrays. 

2.3.1.3 Test case 3: louver case- no mechanical systems, louver array.   

The louver case, like the box case also uses no artificial energy.  The simulated results 

that are found within this test correspond to how the building would respond to the 

environment situation without any interference of conditioning systems.  The box case 

has high temperature swings throughout the year, but resists the box case’s temperature 



www.manaraa.com

46 

profile within the house, and lags the box case due to the influence of the louver array.  

The louver case is another uninhabitable building and used just to reinforce the proof of 

concept for the louver array.  The Louver Case is directly compared against the Systems 

Case to showcase the differential between the mechanical systems alone conditioning a 

space and the introduction of the louver array.  

2.3.1.4 Test case 4: systems case- mechanical systems attaining ASHRAE 55 

comfort standards, louver array.  The Systems Case is the culmination of the all the 

systems introduced within the research.  The systems case includes an ideal air 

conditioning and heating systems to condition the building to ASHRAE 55 Standards, 

19.6 degrees C at the lowest temperature, and 25.1 degrees C at the highest temperature 

across the year, in addition to all the benefits of the louver array.  The reduction in 

artificial cooling energy is due to the removal of a portion of the solar heat gains in the 

cooling months, as well as, the minimization of the increase of necessary artificial 

heating in the heating months.  

2.3.1.5 Test case results.  The test cases compare different data to  

understand similar concepts of the research.  The interior air temperature is simulated 

within each test case, but the test cases without mechanical systems offer the most useful 

results, due to the fact that the interior air temperature is able to vary influenced only by 

the exterior temperature and the amount of solar heat gain.  The test cases with 

mechanical systems only show the non-influenced temperature swings within the 

ASHRAE 55 range of 19.1 degrees C to 25.6 degrees C.  Figure 2.8 shows the interior 

temperatures of the model and the experimental house side by side.  The mechanical test 

cases show the amount of energy that is necessary to attain ASHRAE 55 comfort levels 
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through standard heating and cooling practices, both with and without a louver array.  By 

comparing the mechanical test cases, the research was able to understand the connection 

between the artificial energy use to condition the space in both louvered and un-louvered 

conditions.  The non-mechanical cases aid in the understanding of how the systems tend 

to interact with the natural surrounds, including the exterior environmental temperature 

and the solar heat gain potential.    

 

 

 
 

22Figure 2.8.  Graph of Interior Temperature Comparing Model Temperature and 

Experimental Temperature 
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2.3.2. Dynamic Model Characteristics.  Every simulated model within this  

research includes the same building, materials, and weather data, goal of this work is to 

discover the optimized louver and optimized louver array geometry for this building and 

building like it.  This is achieved through dynamically altering the variable of the louver 

array to include every variable possible within a set range.  This variable range is unique 

to each louver variable and is explained further within the experimental design section.  

By systematically altering the each variable and executing an Energy Plus simulation, 

this work was able to create a series of data points to categorize the effects of changing 

the individual variable and the interdependent effects the variable had on one another.  

These simulated output results were compiled to showcase the effects of the variables and 

to determine the array and louver configuration with the least annual energy consumption 

within the house.  Figure 2.9 illustrates all of the dynamic variables considered within 

this work, and the interaction between each of the variables.  

 

 

 
 

23Figure 2.9.  Illustration of Each Dynamic Variable 
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Evaluating the louvers side by side, with all other effects remaining the same, the 

effects of the louvers and the effects of the variable configurations could be compared 

directly.  Once the simulations for each of the variables sets were complete, the energy 

results from each variable set could be evaluated.  This comparison not only allowed for 

the least energy intensive louver configuration to be determined, but also created a 

systematic file of interdependent variables and their energy outputs.  With this 

compilation of outputs, energy demand for continuous variables, outside the finite and 

discrete number of variable that where run within this work, could be accessed.  This 

research has created an initial prototype software to access any variation of louver 

configuration within the range of the research.  The range of the research was derived 

primarily from the ability to manufacture the materials and the industry norms for louver 

technology.  
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3. EXPERIMENTAL PROCEDURE 

3.1 EXPERIMENTAL DESIGN  

3.1.1. House Design.  The simulated house was designed for the US DOE  

Solar Decathlon in 2009, by Missouri S&T.  This house was the fourth house designed 

and constructed to compete for that competition by the Missouri S&T team for students.  

After the competition, this house came to rest, along with the other returned homes, at the 

Missouri S&T Solar Village.  This Solar Village is a community of these four solar 

homes to be used as an outreach, education, and teaching tool at the university.  The 

homes also serve as faculty and student housing for the campus.  The house that this 

research focused on was the latest and most prominent application of passive solar 

shading, the Missouri S&T 2009 solar house.  Figure 3.1 shows a photo if the original 

experimental house on its site at the Missouri S&T Solar Village.   

 

 

 
 

24Figure 3.1.  Photo of the Original Experimental House by Missouri S&T 
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The 2009, as it’s called, is the only house within the solar village to implement a 

solar shading louver array.  Its array stretches across the entire south façade, across the 

fenestration surfaces, as well as, the opaque surfaces of the walls.  The model of the 

2009, seen in Figure 3.2, was constructed to follow, to the best ability, the 2009 building 

materials, structure, interior spaces, and building shape, size and geometry.  These static 

components of the house all were modeled after the original to best represent, within a 

virtual space, the effects that the materials had on the internal environment of the home, 

and the energy requirements of the mechanical systems.      

 

 

 
 

25Figure 3.2.  Image of the 2009 Simulation Model 

 

 

 

3.1.2. Exterior Surfaces.  The 2009 house has a simple floor plane that was  

translated into the model.  It consists of a rectangle floor 49 feet long in the East-West 

direction, or along the positive X coordinate line, assuming an origin point at the lowest, 

east point of the house.  The length of the house, or along the North- South plane of the 

house, is 15 feet.  The input into Energy Plus is an X, Y, Z coordinate system in metric 
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units.  The seemingly odd coordinates are due to the conversion from the imperial units 

used to design and construct the house to metric used within Energy Plus.  Table 3.1 

 illustrates the X, Y, Z coordinates of each vertex to form wall planes within the 

building’s external structure and as well as displays the material objects and Energy Plus 

construction objects used within the model, from the Energy Plus file.   

 

 

10Table 3.1.  Wall Construction and Location 

 

 
 

 

 

The floor, roof materials, and construction are also input from characteristics of 

the actual house.  The floor is divided by the interior surface material into the main house 

floor (Zone 1) and the bathroom floor.  Even though the flooring is different, the thermal 

zone of the model is the same for the building.  The difference is due to the flooring 

material used for each.  The main floor is wood flooring.  As a wood material, the floor 

Name Units NORTH WALL LOW NORTH WALL HIGH EAST WALL WEST WALL SOUTH WALL

Surface Type Wall Wall Wall Wall Wall

Construction Name EXTERIOR WALL EXTERIOR WALL EXTERIOR WALL EXTERIOR WALL EXTERIOR WALL

Zone Name ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1

Outside Boundary Condition Outdoors Outdoors Outdoors Outdoors Outdoors

Sun Exposure Sun Exposed Sun Exposed Sun Exposed Sun Exposed Sun Exposed

Wind Exposure Wind Exposed Wind Exposed Wind Exposed Wind Exposed Wind Exposed

View Factor to Ground autocalculate autocalculate autocalculate

Number of Vertices 4 4 5 5 4

Vertex 1 X-coordinate m 14.93 14.93 14.93 0.00 0.00

Vertex 1 Y-coordinate m 4.57 4.57 0.00 4.57 0.00

Vertex 1 Z-coordinate m 0.00 2.74 0.00 0.00 0.00

Vertex 2 X-coordinate m 0.00 0.00 14.93 0.00 14.93

Vertex 2 Y-coordinate m 4.57 4.57 4.57 0.00 0.00

Vertex 2 Z-coordinate m 0.00 2.74 0.00 0.00 0.00

Vertex 3 X-coordinate m 0.00 0.00 14.93 0.00 14.93

Vertex 3 Y-coordinate m 4.57 4.19 4.57 0.00 0.00

Vertex 3 Z-coordinate m 2.74 4.11 2.74 2.74 2.74

Vertex 4 X-coordinate m 14.93 14.93 14.93 0.00 0.00

Vertex 4 Y-coordinate m 4.57 4.19 4.19 4.19 0.00

Vertex 4 Z-coordinate m 2.74 4.11 4.11 4.11 2.74

Vertex 5 X-coordinate m 14.93 0.00

Vertex 5 Y-coordinate m 0.00 4.57

Vertex 5 Z-coordinate m 2.74 2.74
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has a low conductivity and as such restricts the flow of energy and heat to and from the 

house, acting as an insulator.  The bathroom floor, however, is a ceramic tile floor and 

has a reasonably high conductivity for flooring.  The tile acts as a conduit for heat and 

energy to enter and leave the building.  Unlike the floor construction within the model, 

the roof is a single unit made of similar materials.  The roof materials characteristics 

again are derived from the actual materials used from the construction of the home.  As a 

single unit of like materials, the roof extends from the top of the South façade, and closes 

the zone volume by connecting to the other wall facades.  Table 3.2 highlights the 

construction and locations of both the roof and floor object within the Energy Plus file.  

 

 

11Table 3.2.  Roof and Floor Construction and Location 

 

Name Units  ZONE 1 FLOOR 
BATHROOM 
FLOOR ROOF 

Surface Type   Floor Floor Roof 

Construction Name   FLOOR ZONE 1 
FLOOR 
BATHROOM 

EXTERIOR 
ROOF 

Zone Name   ZONE 1 ZONE 1 ZONE 1 

Outside Boundary Condition   Outdoors Outdoors Outdoors 

Sun Exposure   Sun Exposed Sun Exposed Sun Exposed 

Wind Exposure   Wind Exposed Wind Exposed Wind Exposed 

Number of Vertices   4 4 4 

Vertex 1 X-coordinate m 14.93 11.12 0.00 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 0.00 0.00 2.74 

Vertex 2 X-coordinate m 0.00 8.38 14.93 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 0.00 0.00 2.74 

Vertex 3 X-coordinate m 0.00 8.38 14.93 

Vertex 3 Y-coordinate m 4.57 2.44 4.19 

Vertex 3 Z-coordinate m 0.00 0.00 4.11 

Vertex 4 X-coordinate m 14.93 11.12 0.00 

Vertex 4 Y-coordinate m 4.57 2.44 4.19 

Vertex 4 Z-coordinate m 0.00 0.00 4.11 
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3.1.3. Fenestration Surfaces.  The glazing or fenestration surfaces within the 

the model are vital to the acceptance of solar gains within the building are also 

responsible for the majority of heat loss through the exterior surfaces.  The 2009 house 

was set primarily on a three foot grid.  Due to this grid style construction, the windows on 

the south façade were each approximately 3 foot long, in the X direction, and varied from 

either being an upper window, at roughly 1 foot tall in the Z direction, or a full length 

window, at roughly six feet tall in the Z direction.  The South façade window coordinates 

were described within Table 3.3.  Of the 14 windows on the south façade, four are shown 

here to conserve space.  The full list is available within Appendix A.   

 

 

12Table 3.3.  South Façade Window Construction and Locations 

 

 

 

Name Units SOUTH WINDOW 1 SOUTH WINDOW 2 SOUTH WINDOW 3

Surface Type Window Window Window

Construction Name WINDOW WINDOW WINDOW

Building Surface Name SOUTH WALL SOUTH WALL SOUTH WALL

Multiplier 1.00 1.00 1.00

Number of Vertices 4.00 4.00 4.00

Vertex 1 X-coordinate m 1.83 2.74 3.66

Vertex 1 Y-coordinate m 0.00 0.00 0.00

Vertex 1 Z-coordinate m 2.13 0.61 0.61

Vertex 2 X-coordinate m 2.74 3.66 4.57

Vertex 2 Y-coordinate m 0.00 0.00 0.00

Vertex 2 Z-coordinate m 2.13 0.61 0.61

Vertex 3 X-coordinate m 2.74 3.66 4.57

Vertex 3 Y-coordinate m 0.00 0.00 0.00

Vertex 3 Z-coordinate m 2.44 2.44 2.44

Vertex 4 X-coordinate m 1.83 2.74 3.66

Vertex 4 Y-coordinate m 0.00 0.00 0.00

Vertex 4 Z-coordinate m 2.44 2.44 2.44
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Considering that the majority of the energy is gained or lost through the South 

façade, this research has taken a focus on the windows of this façade.  The windows on 

the East, West and North façade are also modeled within this work within Tables 3.4 and 

3.5.  The entire list is available in Appendix A.  Each of these tables corresponds to the 

location and material makeup of each of the window on any façade surface.   

 

 

13Table 3.4.  West and East Façade Window Construction and Locations 

 

Name Units 
WEST 
WINDOW 1 

EAST 
WINDOW 1 

EAST 
WINDOW 2 

EAST 
DOOR 

Surface Type   Window Window Window Door 

Construction Name   WINDOW WINDOW WINDOW DOOR 

Building Surface 
Name   WEST WALL EAST WALL EAST WALL 

EAST 
WALL 

Multiplier   1.00 1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 4.00 

Vertex 1 X-
coordinate m 0.00 14.93 14.93 14.93 

Vertex 1 Y-
coordinate m 4.42 0.30 1.22 2.74 

Vertex 1 Z-
coordinate m 1.22 2.13 2.13 0.00 

Vertex 2 X-
coordinate m 0.00 14.93 14.93 14.93 

Vertex 2 Y-
coordinate m 2.59 1.22 2.13 3.66 

Vertex 2 Z-
coordinate m 1.22 2.13 2.13 0.00 

Vertex 3 X-
coordinate m 0.00 14.93 14.93 14.93 

Vertex 3 Y-
coordinate m 2.59 1.22 2.13 3.66 

Vertex 3 Z-
coordinate m 2.13 2.44 2.44 2.44 

Vertex 4 X-
coordinate m 0.00 14.93 14.93 14.93 

Vertex 4 Y-
coordinate m 4.42 0.30 1.22 2.74 

Vertex 4 Z-
coordinate m 2.13 2.44 2.44 2.44 



www.manaraa.com

56 

These static surfaces remained unchanged in all of the simulations regardless of 

louver configuration.  By maintaining these unchanging components within each model, 

the louver variables were able to be compared independently of extraneous 

environmental changes.    

 

 

14Table 3.5.  North Façade Window Construction and Locations 

 

 
 

 

 

3.1.4. Louver Design.  The optimum louver configuration is the goal of this  

research.  By varying the critical characteristics of the louver and the array geometry, the 

optimum louver can be defined as the system to produce the least energy dependent 

home, according to the energy model and energy systems output.  Each of the 

characteristics was systematically changed within manufacturer-set upper limits.  To this 

goal, the optimum size louver and its configuration will still be able to be manufactured 

Name Units NORTH WINDOW NORTH WINDOW HIGH 1

Surface Type Window Window

Construction Name WINDOW WINDOW

Building Surface Name NORTH WALL LOW NORTH WALL HIGH

Multiplier 1.00 1.00

Number of Vertices 4.00 4.00

Vertex 1 X-coordinate m 2.90 14.71

Vertex 1 Y-coordinate m 4.57 4.39

Vertex 1 Z-coordinate m 1.22 3.40

Vertex 2 X-coordinate m 0.23 13.87

Vertex 2 Y-coordinate m 4.57 4.39

Vertex 2 Z-coordinate m 1.22 3.40

Vertex 3 X-coordinate m 0.23 13.87

Vertex 3 Y-coordinate m 4.57 4.27

Vertex 3 Z-coordinate m 2.13 3.84

Vertex 4 X-coordinate m 2.90 14.71

Vertex 4 Y-coordinate m 4.57 4.27

Vertex 4 Z-coordinate m 2.13 3.84
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by the industry today.  Those louver and array characteristics are depth, height, offset, 

and width.  Each of the four characteristics was assigned four discrete values within 

manufacturing ability of the louver.  These characteristics were then assembled into all 

the possible combinations of the variables.  These 256 possible combinations of the 

louver variables were then added to the house simulation and run within the simulation 

engine to simulate an entire year’s worth of solar gain and environmental factors on the 

house.  These 256 discrete data points, associated with the combined heating and cooling 

loads for each louver array, were collected and compiled to create a view of the least 

energy intensive louver array for this latitude and climate.  The variables within this work 

were described as a series of four values.  Any number series directly described the 

louver array with its variables in alphabetical order.  In other words, the louver array with 

a depth of one inch, a height of one inch, and offset of zero inches, and width of one inch 

will be labeled in alphabetical order of its variables; d, h, o, w: 1,1,0,1.      

3.1.4.1 Depth.  The depth is the component of the louver array that  

corresponds to the distance between the outermost tip and the center point closest to the 

structural wall.  The depth, in conjunction with the height of louver array, is primarily 

responsible for the amount of light able to be reflected from the covered surface.  In this 

research the depth of the louver array was divided into four discrete values for possible 

variables.  The variables range from the highest and lowest extremes of the manufacturer 

ability and two median values of the range.  The depth variables considered within this 

research ranged from the lowest value of 1 inch, to a set of distributed median values of 6 

inches and 12 inches, and a highest value normally manufactured at 18 inches.  
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3.1.4.2 Height.  The height is the distance between the center points of the  

louvers within the array.  This variable is responsible for the majority of the light being 

able to pass through the array without shading.  A large height will allow a majority of 

the energy to pass through the array, and is usually attributed with lower heating loads 

and higher cooling loads.  The height is an array louver variable so does not have a 

manufacturer designation.  The values for the height examined within this research are 

the ranges generally seen within residential or commercial installations.  The height is the 

critical element that sets the number of louvers that can be within a finite space, as 

highlighted in Figure 3.3.  The allocated space used within this research was the 

fenestration space utilized on the existing house at 7.5 feet.  The highest louver within 

any array could not be any higher than the top most windows on the South façade.   

 

 

 
 

26Figure 3.3.  Array Restrictions on Height of Array 

 

 

 

Top-most Louver  

Bottom-most Louver  

7.5 foot Clearance to  

install Louver Array  
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The height between the louvers directly affected the number of louver that could 

fit within that space.  Table 3.6 describes the value levels of each of the dynamic variable 

within this work.  

15Table 3.6.  Range Values for Dynamic Variables within the Model 

 

  Low  Low Mid  Mid High  High 

Depth inches 1 6 12 18 

Height inches 1 4 8 12 

Offset inches 0 4 8 12 

Width inches 1 2 4 6 

 

 

 

3.1.4.3 Offset.  The offset describes the distance between the louver’s back and  

the structural wall.  This was another louver array variable that is independent of 

manufacturer specification, as the offset is focused primarily on the installation portion of 

the configuration.  The offset is the variable responsible, in conjunction with height, 

which affects the amount energy able to pass through the louver.  A larger offset variable 

will equate to a louver array further from the structural wall and generally further from 

the fenestration surfaces.  This larger depth will allow more light to pass throughout the 

day, when compared to a smaller offset variable.  The offset variables considered within 

this work were taken to represent a zero inch offset, or the louver was against the wall, up 

to a 12 inch offset, which was considered to be a large residential offset.  

3.1.4.4 Width.  The width variable of the louver represents the distance between 

the upper and lower portions of the louver.  This variable, with height, affects the number 

of louver that can fit within a finite amount of space.  The width, in addition to the height, 

set the number of louver that could be installed on the specific façade face.  By setting the 

number of louver, the width was responsible for the amount of energy allowed or blocked 
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at the periphery of the array, and affected the shading zone on the South façade, by 

increasing the upper portion of the louver.    

 

3.1.5. Simulation Development.  Each of the 256 combinations of louver and  

array configurations simulations were ran in Energy Plus to access the annual energy load 

of the each of the configurations.  The smallest energy demand across the year 

corresponded to the louver and array design that allowed the greatest amount of solar 

gain during the heating months, or the winter months, and the greatest amount of shading 

during the cooling months, or the summer.  This delicate balance between heating and 

cooling cycles disallows the ability in this climate to use a full shade or no shade option, 

but this combination set of variables contains a group of configuration representative 

design considerations that assume discrete variable sets across the entire finite range, 

from an almost full shade configuration of 1 1 0 1, to a configuration predominantly open 

without shading, like 18 12 12 6.  These two extremes can be seen in Figure 3.4.   

 

 

 
 

27Figure 3.4.  Illustration of Louver Configuration Extremes  
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4. RESULTS AND CONCLUSION 

4.1 DATA ANALYSIS   

The energy analysis was simulated using the Energy Plus simulation engine, and 

the annual energy load results of each of the 256 was compiled into a master spreadsheet.  

This master sheet facilitated the collection and manipulation of the raw Energy Plus data 

to determine which louver characteristic contributed the most to the energy reduction, in 

the design of the louver array, as well as, which louver configuration design consumed 

the least annual energy through the mechanical systems within the house.  Once validated 

against the test cases, the house simulation could be run to test each of the louver 

configurations in turn.  Appendix B highlights the all the combinations on a single figure 

with the outputs.  The graph of total annual energy consumption of the various 

combinations is presented in Appendix B.  Figure 4.1 is a graph of the best performing 

louver configurations based on the minimal heating and cooling load was determined by 

the Louver Configuration Input Program.  

4.1.1.  Annual Energy Results.  The focus of this work was on the ideal  

heating and cooling loads of the Missouri S&T 2009 Solar House on the S&T campus in 

Rolla, Missouri.  These annual calculated loads are representative of the total energy 

necessary to heat and cool this house in accordance with ASHRAE 55 comfort zone 

standards.  By using this metric as a basis for the energy loading on the mechanical 

systems of the house, the effect of the each louver configuration could be compared 

directly to the other configurations, with all other unexamined factors unchanging.  

Beyond the fact the actual experimentation would be too costly to run, the simulation also 
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allows for the interdependent variables outside the control of the experiment to remain 

unchanged throughout the simulation process.   

 

 

 
 

28Figure 4.1.  Graph of Best Performing Louver Configurations 

 

 

 

Appendix B displays both the total annual energy for each louver configuration as 

well as the heating and cooling loads that make up the total energy load.  The total energy 

loads from all the configurations ranged from 4608 kWh to a maximum to 5442 kWh, not 

including the baseline house without louver.  The baseline house had a total energy load 

of 5563 kWh.  According to this data, any configuration of louvers decreased the energy 

load of the house, through affecting the heating and cooling systems at a minimum 

4600

4650

4700

4750

4800

4850

4900

N
o

 L
o

u
ve

r
1

	
1

	
0

1
	

1
	

4
1

	
1

	
8

1
	

1
	

1
2

1
	

4
	

0
1

	
4

	
4

1
	

4
	

8
1

	
4

	
1

2
1

	
8

	
0

1
	

8
	

4
1

	
8

	
8

1
	

8
	

1
2

1
	

1
2

	
0

1
	

1
2

	
4

1
	

1
2

	
8

1
	

1
2

	
1

2
6

	
1

	
0

6
	

1
	

4
6

	
1

	
8

6
	

1
	

1
2

6
	

4
	

0
6

	
4

	
4

6
	

4
	

8
6

	
4

	
1

2
6

	
8

	
0

6
	

8
	

4
6

	
8

	
8

6
	

8
	

1
2

6
	

1
2

	
0

6
	

1
2

	
4

6
	

1
2

	
8

6
	

1
2

	
1

2
1

2
	

1
	

0
1

2
	

1
	

4
1

2
	

1
	

8
1

2
	

1
	

1
2

1
2

	
4

	
0

1
2

	
4

	
4

1
2

	
4

	
8

1
2

	
4

	
1

2
1

2
	

8
	

0
1

2
	

8
	

4
1

2
	

8
	

8
1

2
	

8
	

1
2

1
2

	
1

2
	

0
1

2
	

1
2

	
4

1
2

	
1

2
	

8
1

2
	

1
2

	
1

2
1

8
	

1
	

0
1

8
	

1
	

4
1

8
	

1
	

8
1

8
	

1
	

1
2

1
8

	
4

	
0

1
8

	
4

	
4

1
8

	
4

	
8

1
8

	
4

	
1

2
1

8
	

8
	

0
1

8
	

8
	

4
1

8
	

8
	

8
1

8
	

8
	

1
2

1
8

	
1

2
	

0
1

8
	

1
2

	
4

1
8

	
1

2
	

8
1

8
	

1
2

	
1

2

En
e

rg
y 

kW
h

 

Simulation ID 

Best Performing Louver Assemblies 

1

2

4

6



www.manaraa.com

63 

reduction of energy load of 121kWh across the year, and at a maximum reduction for this 

experiment of 995 kWh.  

4.1.2. ANOVA.  The effect of any of the variables were considered  

independent of the others.  An Analysis of Variance Factorial Test (ANOVA) was 

performed to determine the main interactions between the variable within the 

configurations.  The ANOVA produced a Sum of Squares analysis for each variable and 

the weight of the variable was derived from the variable percent of the total Sum of 

Squares value.  This weight was used to assess the effect of the variable within the weight 

interpolation of in the Louver Configuration Input Program. The weights of each of the 

variables were compiled into Table 4.1.  

 

 

16Table 4.1. Weights of the Variable from the ANOVA 

 

   Weights  

Depth  46.8% 

Height  8.6% 

Offset  44.5% 

Width  0.1% 

 

 

 

4.1.3. Overall Optimized Louver Configuration.  The most effective louvers  

focused on the reduction of energy were expressed on the Top Performers Graph in 

Figure 4.1.  Table 4.2 highlights the top performing louver configurations with each 

configuration’s energy loading.  Table 4.2 shows that the 6804 series of louvers was the 

best louver configuration and that the width had little impact on the energy loading.  This 

conclusion follows the data presented from the graph of energy outputs in Appendix B 

and the ANOVA weight analysis.  Of the top ten listed in Table 4.2, configuration 6804 
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claimed the most effective louver array by facilitating an energy reduction to 4607 kWh, 

a reduction from the baseline house without louvers of 955 kWh.  This louver array and 

building geometry accounted for a greater than 17% reduction in energy consumed over 

the course of the year.  This data concluded that a louver configuration with a louver six 

inches deep, and four inches wide, with a height between louver of eight inches, installed 

directly to the façade it shades is the best applications of louvers to a house like the 2009 

Solar House in Rolla, Missouri.    

 

 

17Table 4.2.  Top Performing Louver Configurations 

 

  Simulation ID  
Total Annual 
Energy [kWh] 

1 6804 4607.7 

2 6806 4619.7 

3 6801 4626.1 

4 6802 4626.5 

5 61204 4649.8 

6 1101 4651.6 

7 61202 4651.7 

8 121202 4676.1 

9 6846 4712.4 

10 6844 4728.6 

 

 

 

4.1.4. Louver Configuration Input Program.  The output of the this research,  

beyond the optimized louver configuration for the Missouri S&T 2009 Solar House, was 

an ability to view homes in the Midwest region of the United States and determine an 

effective louver array configuration.  This research developed a simple input program 

compiling the results of this research to be able to input any value for the louver design 

characteristics, within the range of this research, and predict an output for the energy 
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consumption that these louvers would expect under ideal conditions and a reduction from 

the baseline, “No Louver” case.  The program also outputs a two dimensional profile 

view of two louvers within the louver assembly.  The ability to input any continuous 

value within the research range for the characteristics allows the user to use and 

understand the effect of a louver array on a building, interactively.  The continuous inputs 

are compared against the two closest discrete variables.  The weights of the variables are 

implemented in regard to their effect on the energy usage of the house due to the louvers.  

Finally the approximate energy consumption of a house in the Midwest climate using the 

input louver configuration is output, and compared against the baseline case for energy 

and electrical cost.  The program assumed all the energy used within the house was 

electricity.  It does not account for any other energy and fuel sources in the cost analysis.  

Table 4.3 and Appendix C showcase the input and output panels for the program and 

Figure 4.2 illustrated the output profile.  

 

 

18Table 4.3.  Input and Output Panel for the Program 

 

Inputs  
     

 

Depth Height  Offset Width  

 Choose any number between:  1-18 1-12 0-12 1-6 
 

 
1 1 1 1 

 

      Cost of Electricity  0.09 $/kWh     
 

      

      Outputs Energy  Cost 
 User Louver Configuration  4704 kWh  $ 423 
 No Louver Demand  5563 kWh  $ 501 
 Reduction Due to Louver 859 kWh $ 77 
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29Figure 4.2.  Output Profile from Program 
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5. FUTURE WORK  

5.1 ITERATION RESOLUTION 

The research on the louver configuration and the combination associated with 

them in this work were conducted at a fairly high resolution.  In other words, the values 

for each of the louver elements had a wide range between discrete inputs.  If this work 

were to be continued, the resolution of the input values should be reduced to be able to 

more accurately estimate the continuous output energy from the spreadsheet.   

 

5.2 DEPENDENT FACTOR STATISTICAL ANALYSIS 

An in-depth statistical analysis could also highlight the independent variables 

within the systems, as well as, develop the understanding of the interdependency between 

the multiple variables like height and depth.  

 

5.3 GEOGRAPHIC LOCATION 

The geographic location could be altered to access the effect of a louver array is 

climates and latitude outside the Midwest of United States.  Higher latitudes would test 

the feasibility and usefulness of louver in colder climates within smaller solar altitudes, 

while lower latitudes, till approaching the equator, would test the usefulness of louvers 

for full scale passive solar shading.   
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APPENDIX A 

FAÇADE WINDOW LISTING 
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Name Units  
SOUTH WINDOW 
1 

SOUTH WINDOW 
2 

SOUTH WINDOW 
3 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   SOUTH WALL SOUTH WALL SOUTH WALL 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 1.83 2.74 3.66 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 2.13 0.61 0.61 

Vertex 2 X-coordinate m 2.74 3.66 4.57 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 2.13 0.61 0.61 

Vertex 3 X-coordinate m 2.74 3.66 4.57 

Vertex 3 Y-coordinate m 0.00 0.00 0.00 

Vertex 3 Z-coordinate m 2.44 2.44 2.44 

Vertex 4 X-coordinate m 1.83 2.74 3.66 

Vertex 4 Y-coordinate m 0.00 0.00 0.00 

Vertex 4 Z-coordinate m 2.44 2.44 2.44 

Name Units  
SOUTH WINDOW 
4 

SOUTH WINDOW 
5 

SOUTH WINDOW 
6 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   SOUTH WALL SOUTH WALL SOUTH WALL 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 4.57 5.49 6.40 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 2.13 2.13 2.13 

Vertex 2 X-coordinate m 5.49 6.40 7.31 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 2.13 2.13 2.13 

Vertex 3 X-coordinate m 5.49 6.40 7.31 

Vertex 3 Y-coordinate m 0.00 0.00 0.00 

Vertex 3 Z-coordinate m 2.44 2.44 2.44 

Vertex 4 X-coordinate m 4.57 5.49 6.40 

Vertex 4 Y-coordinate m 0.00 0.00 0.00 

Vertex 4 Z-coordinate m 2.44 2.44 2.44 

     

     

     

Name Units  SOUTH WINDOW SOUTH WINDOW SOUTH WINDOW 
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7 8 9 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   SOUTH WALL SOUTH WALL SOUTH WALL 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 7.31 8.23 9.14 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 0.61 2.13 2.13 

Vertex 2 X-coordinate m 8.23 9.14 10.06 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 0.61 2.13 2.13 

Vertex 3 X-coordinate m 8.23 9.14 10.06 

Vertex 3 Y-coordinate m 0.00 0.00 0.00 

Vertex 3 Z-coordinate m 2.44 2.44 2.44 

Vertex 4 X-coordinate m 7.31 8.23 9.14 

Vertex 4 Y-coordinate m 0.00 0.00 0.00 

Vertex 4 Z-coordinate m 2.44 2.44 2.44 

     

     

     

Name Units  
SOUTH WINDOW 
10 

SOUTH WINDOW 
11 

SOUTH WINDOW 
12 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   SOUTH WALL SOUTH WALL SOUTH WALL 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 10.06 10.97 11.89 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 2.13 0.61 2.13 

Vertex 2 X-coordinate m 10.97 11.89 12.80 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 2.13 0.61 2.13 

Vertex 3 X-coordinate m 10.97 11.89 12.80 

Vertex 3 Y-coordinate m 0.00 0.00 0.00 

Vertex 3 Z-coordinate m 2.44 2.44 2.44 

Vertex 4 X-coordinate m 10.06 10.97 11.89 

Vertex 4 Y-coordinate m 0.00 0.00 0.00 

Vertex 4 Z-coordinate m 2.44 2.44 2.44 

Name Units  
SOUTH WINDOW 
13 

SOUTH WINDOW 
14 SOUTH DOOR 
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Surface Type   Window Window Door 

Construction Name   WINDOW WINDOW DOOR 

Building Surface Name   SOUTH WALL SOUTH WALL SOUTH WALL 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 12.80 13.72 0.91 

Vertex 1 Y-coordinate m 0.00 0.00 0.00 

Vertex 1 Z-coordinate m 2.13 0.61 0.00 

Vertex 2 X-coordinate m 13.72 14.63 1.83 

Vertex 2 Y-coordinate m 0.00 0.00 0.00 

Vertex 2 Z-coordinate m 2.13 0.61 0.00 

Vertex 3 X-coordinate m 13.72 14.63 1.83 

Vertex 3 Y-coordinate m 0.00 0.00 0.00 

Vertex 3 Z-coordinate m 2.44 2.44 2.44 

Vertex 4 X-coordinate m 12.80 13.72 0.91 

Vertex 4 Y-coordinate m 0.00 0.00 0.00 

Vertex 4 Z-coordinate m 2.44 2.44 2.44 
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Name Units  NORTH WINDOW 
NORTH WINDOW 
HIGH 1 

NORTH WINDOW 
HIGH 2 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   
NORTH WALL 
LOW 

NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 2.90 14.71 13.79 

Vertex 1 Y-coordinate m 4.57 4.39 4.39 

Vertex 1 Z-coordinate m 1.22 3.40 3.40 

Vertex 2 X-coordinate m 0.23 13.87 12.95 

Vertex 2 Y-coordinate m 4.57 4.39 4.39 

Vertex 2 Z-coordinate m 1.22 3.40 3.40 

Vertex 3 X-coordinate m 0.23 13.87 12.95 

Vertex 3 Y-coordinate m 4.57 4.27 4.27 

Vertex 3 Z-coordinate m 2.13 3.84 3.84 

Vertex 4 X-coordinate m 2.90 14.71 13.79 

Vertex 4 Y-coordinate m 4.57 4.27 4.27 

Vertex 4 Z-coordinate m 2.13 3.84 3.84 

Name Units  
NORTH WINDOW 
HIGH 3 

NORTH WINDOW 
HIGH 4 

NORTH WINDOW 
HIGH 5 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   
NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 12.88 11.96 11.05 

Vertex 1 Y-coordinate m 4.39 4.39 4.39 

Vertex 1 Z-coordinate m 3.40 3.40 3.40 

Vertex 2 X-coordinate m 12.04 11.12 10.21 

Vertex 2 Y-coordinate m 4.39 4.39 4.39 

Vertex 2 Z-coordinate m 3.40 3.40 3.40 

Vertex 3 X-coordinate m 12.04 11.12 10.21 

Vertex 3 Y-coordinate m 4.27 4.27 4.27 

Vertex 3 Z-coordinate m 3.84 3.84 3.84 

Vertex 4 X-coordinate m 12.88 11.96 11.05 

Vertex 4 Y-coordinate m 4.27 4.27 4.27 

Vertex 4 Z-coordinate m 3.84 3.84 3.84 

Name Units  
NORTH WINDOW 
HIGH 6 

NORTH WINDOW 
HIGH 7 

NORTH WINDOW 
HIGH 8 
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Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   
NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 10.13 9.22 8.31 

Vertex 1 Y-coordinate m 4.39 4.39 4.39 

Vertex 1 Z-coordinate m 3.40 3.40 3.40 

Vertex 2 X-coordinate m 9.30 8.38 7.47 

Vertex 2 Y-coordinate m 4.39 4.39 4.39 

Vertex 2 Z-coordinate m 3.40 3.40 3.40 

Vertex 3 X-coordinate m 9.30 8.38 7.47 

Vertex 3 Y-coordinate m 4.27 4.27 4.27 

Vertex 3 Z-coordinate m 3.84 3.84 3.84 

Vertex 4 X-coordinate m 10.13 9.22 8.31 

Vertex 4 Y-coordinate m 4.27 4.27 4.27 

Vertex 4 Z-coordinate m 3.84 3.84 3.84 

Name Units  
NORTH WINDOW 
HIGH 9 

NORTH WINDOW 
HIGH 10 

NORTH WINDOW 
HIGH 11 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 

Building Surface Name   
NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 7.39 6.48 5.56 

Vertex 1 Y-coordinate m 4.39 4.39 4.39 

Vertex 1 Z-coordinate m 3.40 3.40 3.40 

Vertex 2 X-coordinate m 6.55 5.64 4.72 

Vertex 2 Y-coordinate m 4.39 4.39 4.39 

Vertex 2 Z-coordinate m 3.40 3.40 3.40 

Vertex 3 X-coordinate m 6.55 5.64 4.72 

Vertex 3 Y-coordinate m 4.27 4.27 4.27 

Vertex 3 Z-coordinate m 3.84 3.84 3.84 

Vertex 4 X-coordinate m 7.39 6.48 5.56 

Vertex 4 Y-coordinate m 4.27 4.27 4.27 

Vertex 4 Z-coordinate m 3.84 3.84 3.84 

Name Units  
NORTH WINDOW 
HIGH 12 

NORTH WINDOW 
HIGH 13 

NORTH WINDOW 
HIGH 14 

Surface Type   Window Window Window 

Construction Name   WINDOW WINDOW WINDOW 
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Building Surface Name   
NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 1.00 

Number of Vertices   4.00 4.00 4.00 

Vertex 1 X-coordinate m 4.65 3.73 2.82 

Vertex 1 Y-coordinate m 4.39 4.39 4.39 

Vertex 1 Z-coordinate m 3.40 3.40 3.40 

Vertex 2 X-coordinate m 3.81 2.90 1.98 

Vertex 2 Y-coordinate m 4.39 4.39 4.39 

Vertex 2 Z-coordinate m 3.40 3.40 3.40 

Vertex 3 X-coordinate m 3.81 2.90 1.98 

Vertex 3 Y-coordinate m 4.27 4.27 4.27 

Vertex 3 Z-coordinate m 3.84 3.84 3.84 

Vertex 4 X-coordinate m 4.65 3.73 2.82 

Vertex 4 Y-coordinate m 4.27 4.27 4.27 

Vertex 4 Z-coordinate m 3.84 3.84 3.84 

Name Units  
NORTH WINDOW 
HIGH 15 

NORTH WINDOW 
HIGH 16 

Surface Type   Window Window 

Construction Name   WINDOW WINDOW 

Building Surface Name   
NORTH WALL 
HIGH 

NORTH WALL 
HIGH 

Multiplier   1.00 1.00 

Number of Vertices   4.00 4.00 

Vertex 1 X-coordinate m 1.90 0.99 

Vertex 1 Y-coordinate m 4.39 4.39 

Vertex 1 Z-coordinate m 3.40 3.40 

Vertex 2 X-coordinate m 1.07 0.15 

Vertex 2 Y-coordinate m 4.39 4.39 

Vertex 2 Z-coordinate m 3.40 3.40 

Vertex 3 X-coordinate m 1.07 0.15 

Vertex 3 Y-coordinate m 4.27 4.27 

Vertex 3 Z-coordinate m 3.84 3.84 

Vertex 4 X-coordinate m 1.90 0.99 

Vertex 4 Y-coordinate m 4.27 4.27 

Vertex 4 Z-coordinate m 3.84 3.84 
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APPENDIX B 

ENERGY OUTPUT KWH 
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Iteration 
Combinations  

Simulation 
ID  

ZONE 
1ZONEHVAC:IDEAL 
LOADSAIRSYSTEM: 
Ideal Loads Total 
Heating Energy 
[kWh](Run Period) 

ZONE 
1ZONEHVAC:IDEAL 
LOADSAIRSYSTEM: 
Ideal Loads Total 
Cooling Energy 
[kWh](Run Period)  

Total Annual 
Energy [kWh] 

d h o w         

        No Louver 1968 3594 5563 

1 1 0 1 1101 2688 1964 4652 

1 1 0 2 1102 2851 1963 4815 

1 1 0 4 1104 3088 1911 4998 

1 1 0 6 1106 3151 1901 5053 

1 1 4 1 1141 2665 2120 4785 

1 1 4 2 1142 2822 2147 4969 

1 1 4 4 1144 2970 2147 5116 

1 1 4 6 1146 3024 2129 5153 

1 1 8 1 1181 2604 2322 4926 

1 1 8 2 1182 2738 2335 5073 

1 1 8 4 1184 2866 2326 5192 

1 1 8 6 1186 2911 2304 5216 

1 1 12 1 11121 2538 2486 5024 

1 1 12 2 11122 2664 2490 5154 

1 1 12 4 11124 2767 2467 5234 

1 1 12 6 11126 3075 2277 5352 

1 4 0 1 1401 2197 2748 4945 

1 4 0 2 1402 2343 2626 4969 

1 4 0 4 1404 2607 2371 4978 

1 4 0 6 1406 2752 2243 4995 

1 4 4 1 1441 2214 2843 5057 

1 4 4 2 1442 2335 2734 5068 

1 4 4 4 1444 2540 2567 5108 

1 4 4 6 1446 2714 2380 5095 

1 4 8 1 1481 2186 2967 5154 

1 4 8 2 1482 2321 2865 5186 

1 4 8 4 1484 2487 2709 5196 

1 4 8 6 1486 2650 2525 5175 

1 4 12 1 14121 2173 3069 5242 

1 4 12 2 14122 2291 2973 5263 

1 4 12 4 14124 2444 2822 5266 

1 4 12 6 14126 2614 2656 5270 

1 8 0 1 1801 2105 3090 5194 
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1 8 0 2 1802 2167 3029 5196 

1 8 0 4 1804 2335 2786 5121 

1 8 0 6 1806 2424 2666 5091 

1 8 4 1 1841 2087 3188 5275 

1 8 4 2 1842 2163 3092 5255 

1 8 4 4 1844 2331 2826 5157 

1 8 4 6 1846 2445 2643 5088 

1 8 8 1 1881 2081 3262 5343 

1 8 8 2 1882 2157 3174 5331 

1 8 8 4 1884 2324 2898 5222 

1 8 8 6 1886 2451 2714 5165 

1 8 12 1 18121 2072 3317 5389 

1 8 12 2 18122 2148 3239 5387 

1 8 12 4 18124 2315 2987 5302 

1 8 12 6 18126 2450 2812 5263 

1 12 0 1 11201 2064 3230 5294 

1 12 0 2 11202 2089 3213 5302 

1 12 0 4 11204 2277 2892 5169 

1 12 0 6 11206 2371 2759 5130 

1 12 4 1 11241 2050 3319 5369 

1 12 4 2 11242 2128 3187 5315 

1 12 4 4 11244 2271 2972 5244 

1 12 4 6 11246 2317 2943 5261 

1 12 8 1 11281 2045 3370 5415 

1 12 8 2 11282 2115 3239 5354 

1 12 8 4 11284 2255 3077 5332 

1 12 8 6 11286 2271 3049 5319 

1 12 12 1 112121 2035 3407 5442 

1 12 12 2 112122 2110 3291 5400 

1 12 12 4 112124 2227 3150 5377 

1 12 12 6 112126 2234 3115 5348 

6 1 0 1 6101 3457 1737 5194 

6 1 0 2 6102 3442 1753 5195 

6 1 0 4 6104 3405 1748 5153 

6 1 0 6 6106 3274 1783 5057 

6 1 4 1 6141 3417 1784 5202 

6 1 4 2 6142 3385 1813 5197 

6 1 4 4 6144 3242 1946 5188 

6 1 4 6 6146 3124 2021 5145 

6 1 8 1 6181 3312 1816 5128 

6 1 8 2 6182 3239 1922 5161 



www.manaraa.com

78 

6 1 8 4 6184 3097 2134 5231 

6 1 8 6 6186 2988 2211 5199 

6 1 12 1 61121 3184 1859 5044 

6 1 12 2 61122 3096 2054 5150 

6 1 12 4 61124 2964 2331 5296 

6 1 12 6 61126 2872 2353 5225 

6 4 0 1 6401 3024 1901 4925 

6 4 0 2 6402 2969 1893 4862 

6 4 0 4 6404 2931 1870 4801 

6 4 0 6 6406 2905 1855 4760 

6 4 4 1 6441 2977 2032 5009 

6 4 4 2 6442 2924 2068 4992 

6 4 4 4 6444 2818 2116 4934 

6 4 4 6 6446 2848 2051 4899 

6 4 8 1 6481 2858 2235 5094 

6 4 8 2 6482 2827 2273 5100 

6 4 8 4 6484 2713 2312 5025 

6 4 8 6 6486 2754 2242 4996 

6 4 12 1 64121 2756 2426 5182 

6 4 12 2 64122 2718 2439 5157 

6 4 12 4 64124 2633 2459 5092 

6 4 12 6 64126 2692 2398 5090 

6 8 0 1 6801 2485 2141 4626 

6 8 0 2 6802 2473 2154 4626 

6 8 0 4 6804 2534 2074 4608 

6 8 0 6 6806 2532 2088 4620 

6 8 4 1 6841 2433 2387 4820 

6 8 4 2 6842 2444 2380 4824 

6 8 4 4 6844 2519 2209 4729 

6 8 4 6 6846 2539 2173 4712 

6 8 8 1 6881 2386 2573 4959 

6 8 8 2 6882 2407 2567 4974 

6 8 8 4 6884 2494 2391 4885 

6 8 8 6 6886 2533 2338 4871 

6 8 12 1 68121 2434 2547 4980 

6 8 12 2 68122 2357 2710 5067 

6 8 12 4 68124 2465 2554 5019 

6 8 12 6 68126 2518 2498 5016 

6 12 0 1 61201 2308 2425 4733 

6 12 0 2 61202 2322 2330 4652 

6 12 0 4 61204 2436 2214 4650 
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6 12 0 6 61206 2425 2365 4790 

6 12 4 1 61241 2263 2666 4929 

6 12 4 2 61242 2339 2466 4804 

6 12 4 4 61244 2405 2460 4866 

6 12 4 6 61246 2360 2616 4975 

6 12 8 1 61281 2228 2819 5046 

6 12 8 2 61282 2310 2639 4949 

6 12 8 4 61284 2362 2653 5016 

6 12 8 6 61286 2304 2774 5078 

6 12 12 1 612121 2193 2935 5128 

6 12 12 2 612122 2290 2791 5081 

6 12 12 4 612124 2316 2795 5111 

6 12 12 6 612126 2261 2886 5147 

12 1 0 1 12101 3507 1667 5173 

12 1 0 2 12102 3494 1685 5179 

12 1 0 4 12104 3475 1718 5192 

12 1 0 6 12106 3465 1722 5188 

12 1 4 1 12141 3500 1670 5170 

12 1 4 2 12142 3456 1693 5149 

12 1 4 4 12144 3457 1740 5198 

12 1 4 6 12146 3449 1754 5203 

12 1 8 1 12181 3362 1678 5040 

12 1 8 2 12182 3336 1716 5052 

12 1 8 4 12184 3394 1834 5228 

12 1 8 6 12186 3396 1887 5283 

12 1 12 1 121121 3309 1697 5005 

12 1 12 2 121122 3215 1748 4963 

12 1 12 4 121124 3264 1947 5212 

12 1 12 6 121126 3285 2075 5361 

12 4 0 1 12401 3397 1802 5199 

12 4 0 2 12402 3386 1803 5189 

12 4 0 4 12404 3352 1807 5159 

12 4 0 6 12406 3314 1796 5110 

12 4 4 1 12441 3342 1857 5199 

12 4 4 2 12442 3325 1901 5226 

12 4 4 4 12444 3195 1995 5190 

12 4 4 6 12446 3248 1977 5224 

12 4 8 1 12481 3197 1964 5161 

12 4 8 2 12482 3179 2031 5210 

12 4 8 4 12484 3048 2199 5247 

12 4 8 6 12486 3101 2186 5287 
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12 4 12 1 124121 3057 2082 5139 

12 4 12 2 124122 3042 2170 5212 

12 4 12 4 124124 2920 2399 5320 

12 4 12 6 124126 2978 2339 5316 

12 8 0 1 12801 2974 1963 4937 

12 8 0 2 12802 2929 1970 4899 

12 8 0 4 12804 2705 2163 4869 

12 8 0 6 12806 2699 2157 4856 

12 8 4 1 12841 2859 2177 5036 

12 8 4 2 12842 2845 2203 5049 

12 8 4 4 12844 2587 2383 4970 

12 8 4 6 12846 2584 2371 4955 

12 8 8 1 12881 2748 2391 5139 

12 8 8 2 12882 2738 2394 5132 

12 8 8 4 12884 2515 2522 5037 

12 8 8 6 12886 2507 2512 5018 

12 8 12 1 128121 2647 2538 5185 

12 8 12 2 128122 2637 2533 5171 

12 8 12 4 128124 2481 2650 5131 

12 8 12 6 128126 2460 2639 5099 

12 12 0 1 121201 2626 2136 4762 

12 12 0 2 121202 2691 1985 4676 

12 12 0 4 121204 2786 1951 4737 

12 12 0 6 121206 2628 2140 4768 

12 12 4 1 121241 2522 2385 4907 

12 12 4 2 121241 2689 2171 4860 

12 12 4 4 121244 2696 2206 4901 

12 12 4 6 121246 2532 2386 4917 

12 12 8 1 121281 2451 2545 4996 

12 12 8 2 121282 2622 2363 4985 

12 12 8 4 121284 2599 2402 5001 

12 12 8 6 121286 2447 2545 4992 

12 12 12 1 1212121 2395 2677 5072 

12 12 12 2 1212122 2563 2519 5082 

12 12 12 4 1212124 2511 2553 5064 

12 12 12 6 1212126 2386 2678 5064 

18 1 0 1 18101 3552 1664 5216 

18 1 0 2 18102 3517 1667 5184 

18 1 0 4 18104 3479 1692 5171 

18 1 0 6 18106 3404 1738 5142 

18 1 4 1 18141 3549 1665 5214 
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18 1 4 2 18142 3500 1671 5170 

18 1 4 4 18144 3333 1741 5074 

18 1 4 6 18146 3250 1840 5090 

18 1 8 1 18181 3527 1669 5196 

18 1 8 2 18182 3428 1684 5111 

18 1 8 4 18184 3192 1804 4996 

18 1 8 6 18186 3105 1962 5067 

18 1 12 1 181121 3518 1681 5199 

18 1 12 2 181122 3351 1703 5054 

18 1 12 4 181124 3061 1876 4937 

18 1 12 6 181126 2970 2122 5092 

18 4 0 1 18401 3450 1746 5197 

18 4 0 2 18402 3443 1757 5200 

18 4 0 4 18404 3419 1773 5192 

18 4 0 6 18406 3420 1772 5192 

18 4 4 1 18441 3402 1758 5160 

18 4 4 2 18442 3378 1829 5207 

18 4 4 4 18444 3263 1886 5149 

18 4 4 6 18446 3352 1894 5246 

18 4 8 1 18481 3265 1793 5058 

18 4 8 2 18482 3234 1900 5134 

18 4 8 4 18484 3113 2048 5161 

18 4 8 6 18486 3195 2113 5308 

18 4 12 1 184121 3131 1842 4973 

18 4 12 2 184122 3095 1994 5089 

18 4 12 4 184124 2977 2255 5232 

18 4 12 6 184126 3053 2321 5374 

18 8 0 1 18801 3217 1892 5109 

18 8 0 2 18802 3200 1902 5102 

18 8 0 4 18804 2892 2114 5006 

18 8 0 6 18806 2868 2126 4994 

18 8 4 1 18841 3072 2043 5115 

18 8 4 2 18842 3061 2067 5129 

18 8 4 4 18844 2763 2343 5106 

18 8 4 6 18846 2742 2338 5080 

18 8 8 1 18881 2934 2226 5160 

18 8 8 2 18882 2926 2295 5222 

18 8 8 4 18884 2676 2482 5158 

18 8 8 6 18886 2655 2475 5131 

18 8 12 1 188121 2815 2474 5289 

18 8 12 2 188122 2811 2483 5294 
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18 8 12 4 188124 2624 2610 5234 

18 8 12 6 188126 3081 2303 5384 

18 12 0 1 181201 2877 2059 4936 

18 12 0 2 181202 3033 1907 4940 

18 12 0 4 181204 3077 1889 4965 

18 12 0 6 181206 2814 2083 4897 

18 12 4 1 181241 2747 2314 5061 

18 12 4 2 181242 3008 2099 5107 

18 12 4 4 181244 2939 2139 5078 

18 12 4 6 181246 2689 2320 5009 

18 12 8 1 181281 2651 2469 5120 

18 12 8 2 181282 2896 2291 5187 

18 12 8 4 181284 2810 2330 5140 

18 12 8 6 181286 2587 2471 5057 

18 12 12 1 1812121 2572 2599 5171 

18 12 12 2 1812122 2795 2445 5240 

18 12 12 4 1812124 2697 2478 5175 

18 12 12 6 1812126 2515 2603 5117 
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APPENDIX C 

USER INPUT PROGRAM EXAMPLE 
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Choose Any Number Between:  1-18 1-12 0-12 1-6 
 

 
1 1 1 1 

 

      Cost of Electricity  0.09 $/kWh     
 

      

      Outputs Energy  Cost 
 User Louver Configuration  4704 kWh  423 $ 
 No Louver Demand  5563 kWh  501 $ 
 Reduction Due to Louver 859 kWh 77 $ 
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